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level Contextual Referring

Zhihao Yuan 1+, Xu Yan 1+, Yinghong Liao 1, Ruimao Zhang i
Sheng Wang >, Zhen Li 1.+ and Shuguang Cui

1 The Chinese University of Hong Kong (Shenzhen),
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Background

Visual Grounding:

Visual grounding (VG) aims at localizing the desired objects or areas in an image or a
3D scene based on an object-related linguistic query

3D Scan

Query: It is a L shaped couch in
front of a brown entertainment
center.

ScanRefer: 3D Object Localization in RGB-D Scans using Natural Language



Background

EICCVSisisal

ScanRefer:

1. Exploiting object detection to generate proposal candidates;
2. Localize described object by fusing language features into candidates.

Proposals

uoipez||e’0q g asny

A black chair in the corner. It
is next to a table.

ScanRefer: 3D Object Localization in RGB-D Scans using Natural Language
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Background

ScanRefer:

Cons:

1. The object proposals in the large 3D scene are usually redundant;

2. The appearance and attribute information 1s not sufficiently captured;

3. The relations among proposals and the ones between proposals and background
are not fully studied.

* ScanRefer generates 114 possible candidates after filtering
proposals by their objectness scores;

* FEach proposal’s feature is generated by the detection framework,

» There is no relation reasoning among proposals

ScanRefer: 3D Object Localization in RGB-D Scans using Natural Language
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InstanceRefer:

1. Instance-level candidate representation (small number);
2. Multi-level contextual inference (attribute, objects’ relation and environment).

Input 3D Scan: ; -
npu can Instance-level candidate Candidate Ol’lly Candidate and Localization
é : neighboring instances rediction

s 3 -

| | e e e L

Attribute Relation
Perception Perception

Localization

Perception

Input Query:

There ish&_y and blue leather chairlin the side of the wall|lt is\one of gray, blue, one of the three, in the side of
three next to each other| and it|the first on the left. leather? first on the left? the wall?
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InstanceRefer Architecture:

Language feature encoding (the same as ScanRefer).

Description Word Embedding W Word Features E

There is a gray and blue | —_ @ — E
leather chair. Placed in a

raw with other chairs in
the side of the wall.




Method R FAC

InstanceRefer Architecture:

Extracting instances through panoptic segmentation (predict instance and semantics).

Description Word Embedding W Word Features E

There is a gray and blue | —_ E — E
leather chair. Placed in a

raw with other chairs in
the side of the wall.

Instance Mask [/

fl 7 (Table) |

=S . extract

Input Point Cloud P

Semantics S Instances pP!
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InstanceRefer Architecture:

Eliminating irrelative instances by the target category (inferred by language).

Description Word Embedding W Word Features E

There is a gray and blue | —_ E — E
leather chair. Placed in a

raw with other chairs in
the side of the wall.

Instance Mask [/

T
[ (Table) | i
{ _. I “Chair

I
: I
)
| i ' &
I (Chair): : b
I
I I
-> - extract ' ... .. : |
— rnd
| 1 filter
I (Chair) : (chair only):
: | |
Input Point Cloud P l (Chair) | :

7’

Instances P! Candidates
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InstanceRefer Architecture:

Generating visual feature of each candidate by multi-level referring (three novel
modules are proposed).

Description Word Embedding W Word Features E

There is a gray and blue | —_ @ — @
leather chair. Placed in a

raw with other chairs in
the side of the wall.

Instance Mask 1

- \
o ;f:v«? (Table) :

(Chair)

filter

o
(Chair) : (chair only): ------ I

(Chair) ,'

7’

== . ) Multi-Level
Semantics S Instances P! Candidates P! Visual Context

- mm mm o= o =
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i

InstanceRefer Architecture:

Scoring each candidate matching language and visual features (the candidate
with the largest score will be regarded as output).

’
Description Word Embedding W Word Features E : (0.95) :
There is a gray and blue | — @ —_ EI_J-' ] E— 0 : :
leather chair. Placed in a — | ohi : (0.31) :
raw with other chairs in peee > | I
the side of the wall. Instance Mask I = ~--==---- ~\ I : """ :
T (Table) e, ! !
I “Chair”! I N (0.03) I
[ |, _————
(Chair) | : | Similarity
-> : | ! Score O
1 filter
(Chair) : (chair only): ------ : :
| e . i
L. (Chair) D ; <
= ~e——-- - S———v Multi-Level

Semantics S Instances P’ Candidates P’ Visual Context
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Method

Specific Modules:
(a) Attribute Perception (AP) Module.

» [t construct a four-layer Sparse Convolution
(SparseConv) as the feature extractor,

lV"xezize * After an average pooling, the global attribute

o perception feature is obtained.
é SparseCony
Layers
/

P

%ge

l' Pooling

—~ A
A
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Specific Modules:

(b) Relation Perception (RP) Module.

It uses k-nearest neighbors to construct a graph, where
nodes’ features are their semantics obtained by

panoptic segmentation and edges are consisted of their
semantics and relative position,

Dynamic graph convolution network (DGCNN) is

Construction exploited to update the node’s feature
i AT . al.
{'chair’, ’tabifgrez:tiiveposiﬁon} Tik = MLP ( [C(PZ ) o C(Pé), S’L ) Sé])
GCN and Mas hir, = MLP([Py; Sg)), ¥ Py € N(P], K)
Pooling

FiR = MaxPool({riyx ® hik}i‘;l)

—~R
7
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Specific Modules:

(c) Global Localization Perception (GLP) Module.

| * [tuses SparseConv layers with height-pooling
_ Astention to generate a 3 x 3 bird-eyes-view (BEV)
Voxelize I Pooling .
plane,
é Spigfecrsnv % E + * By combining language feature, it predicts
~ > Famdlidne baseialated which grid the target object is located in,
- feat feat . foys
P Oh"lf”f " 1 CATHIES e * [tinterpolates probabilities and generates the
gt S Tlnterpolate global perception features by merging
////////T-ps - g features from AP module.
L N P A
BEV features E Localization

Prediction
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Specific Modules:
(d) Matching Module

* A naive version by using Cosine similarity;
* An enhance version by using modular co-attention from MCAN [1].

(e) Contrastive Objective

S exp(Q))
S exp(Q) + M exp(QF)

Lnat = —10g

where Q+ and Q— denote the scores of positive and negative pairs.

[1] Deep modular co-attention networks for visual question answering
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ScanRefer:

Table 1. Comparison of localization results. TGNN replaces the original GRU layers with pre-trained BERT to extract language features.
Our method follows TGNN's strategy of only taking coordinates (Geo) and color information (RGB) as input, while results of ScanRefer
on benchmark are obtained by using additional normals (Nor) and multi-view features from a pre-trained 2D feature extractor. Scores for
the test set are obtained from the online evaluation. Only the published methods are compared. Accessed on March 18, 2021.

Unique Multiple Overall
Method Input Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5
Validation results
SCRC [9] RGB image 24.03 9.22 17.77 5.97 18.70 6.45
One-stage [ 3] RGB image 29.32 22.82 18.72 6.49 20.38 9.04
ScanRefer [] Geo + RGB 65.00 43.31 30.63 19.75 37.30 24.32
TGNN [10] Geo + RGB 64.50 53.01 2401 21.88 34.29 27.92
TGNN[ | O]+BERT [5] Geo + RGB 68.61 56.80 29.84 23.18 ALAr 29.70
IntanceRefer (Ours) Geo + RGB 77.45 66.83 31.27 24.77 40.23 3293
Test results (ScanRefer benchmark)
ScanRefer [] Geo+Nor+Multiview 68.59 43.53 34.88 20.97 42.44 26.03
TGNN [10] Geo + RGB 62.40 53.30 28.20 21.30 35.90 28.50
TGNN [ 0]+BERT [5] Geo + RGB 68.34 58.94 3312 25.26 41.02 32.81
IntanceRefer (Ours) Geo + RGB 77.82 66.69 34.57 26.88 44.27 35.80
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Results

ScanRefer Benchmark

This table lists the benchmark results for the ScanRefer Localization Benchmark scenario.

Unique Unique Multiple Multiple Overall Overall
Method i acc@0.25loU acc@0.5loU acc@0.25loU acc@0.5loU acc@0.25loU acc(@o.5loU
InstanceRefer P 0.7782 1 0.8669 1 0.3457 4 0.2688 2 0.4427 3 0.3580 1

Zhihao Yuan, Xu Yan, Yinghong Liao, Ruimao Zhang, Zhen Li*, Shuguang Cui: InstanceRefer. Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual
Referring. arXiv preprint

DetrRefer&Trick&Aug 075762 0.5515 4 0.4224 1 0.2933 1 0.4578 1 030122
PointGGroup MCANM 0.7510 3 0.6397 2 0.32716 0.2535 3 0.4222 5 0.3401 2
TGNN 0.6834 & 0.5894 3 0.33125 0.2526 4 0.4102 & 0.3281 4

Pin-Hao Huang, Han-Hung Lee, Hwann-Tzong Chen, Tyng-Luh Liu: Text-Guided Graph Meural Metwork for Referring 30 Instance Segmentation. AAAL 2021

SRGA 0.7494 4 051285 036312 022185 0.4497 2 025715
ScanRefer [P 068595 04353 6 0.3488 3 0.2097 & 0.4244 4 026036
Dave Zhenyu Chen, Angel . Chang, Matthias Mieliner: ScanRefer: 30 Object Localization in RGE-D Scans using Matural Language. 16th European Conference on Computer Vision (ECCV), 2020

ScanRefer Baseline 0.6422 7 0.4196 7 0.30907 0.18327 0.3837 7 0.23627
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Results

This is a padded chair with

2 no arms and is 1al bo?k;hdf i L The white armchair is to There are brown

G checkerboard color blue  COTMer of the room next  yt js ghe plack door at  right of an occasional ; ! The table is south of
B and light blue or white. It o the window widk the end of the table. The white O, left-most couch
‘=" belongs to the second table blinds on it. The o3 : They are above the . )
S from the front of the class on  bookshelf is a double hallway: It {ms a rerd ﬂ{'mchmr" is on the right counter to the lefeof The table is a yellow
R theside with the windows b okchelf and if packed  @nd white sign on it. side against the wall on square.

@) and is the second chair the wooden floor. the range hood.

Sfairly full with books.

closest the middle window.

ScanRefer
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Results

Nr3D/Sr3D:

Table 2. Comparison of referring object identification on Nr3D and Sr3D datasets. Here ‘easy’ and ‘hard” determined by whether there
are more than two instances of the same object class in the scene. ‘view-dependent’ and ‘view-independent’ determined by whether the

referring expression depending on camera view.

Dataset  Method Easy Hard View-dep. View-indep. Overall
Referlt3DNet [ ] 43.6 % £ 0.8 % 27.9% £ 0.7% 325% L0.7% 37.1% £ 0.8% 35.6% £ 0.7%

Nr3D TGNN [10] 44.2% £+ 0.4% 30.6% £+ 0.2% 35.8% £0.2% 38.0% £ 0.3% 37.3% £ 0.3%
IntanceRefer (Ours) 46.0% +0.5% 31.8% +0.4% 34.5% + 0.6 % 41.9% + 0.4% 38.8% 1+ 0.4%
ReferIt3DNet [ 1] 44.7% + 0.1 % 31.5% +0.4% 39.2% £+ 1.0% 40.8% £ 0.1 % 40.8% £ 0.2%

Sr3D TGNN [10] 48.5% + 0.2% 36.9% + 0.5% 45.8% £ 1.1 % 45.0% £ 0.2 % 45.0% £ 0.2 %

IntanceRefer (Ours) 51.1% +0.2% 40.5% +0.3% 45.4% + 0.9 % 48.1% +0.3% 48.0% 4+ 0.3%
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Background

Task Description (3D Dense Captioning)

Scan2Cap:
Context-aware Dense Captioning in RGB-D Scans

Dave Zhenyu Chen’ Ali Gholami? Matthias Niefsner*
Angel X. Chang?

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Dave



Background

Limitations

* The object representations in Scan2Cap are defective
since they are solely learned from sparse 3D point
clouds, thus failing to provide strong texture and
color information compared with the ones generated
from 2D 1mages.

* Itrequires the extra 2D input 1n both training and
inference phases. However, the extra 2D information
1s usually computation intensive and unavailable
during inference.




X-Trans2Cap

Motivation

* We propose a Cross-Modal
Knowledge Transfer framework on
3D dense captioning task.

* During the training phase, the teacher ')
network exploits auxiliary 2D 2D y—)'
modality and guides the student

. 3D ¢} &
network that only takes point clouds — -
as input through the feature Knowledge Smg}l;-gmif
consistency constraints.
* A more faithful caption can be o B
p 3D g j"?_) 3D éé} i

generated only using point clouds

ring the inference. s
du gt C crence Training Phase Inference Phase
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2D and 3D Inputs

3D Proposals 2D Proposals
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2D and 3D Inputs

Target object Reference object

3D Modal Inputs Multi-Modal Inputs
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Architecture
3D Modal Inputs
F3d es
|
1]
R
|

Ground Truth i Descriptions

Target object Reference object ——  both in training and inference



X-Trans2Cap

Architecture
Multi-Modal Inputs 3D Modal Inputs

1| 1{

Teacher ... Student ---

l
1 1{

! !

. L L -
Descriptions —— . Ground Truth «——— Descriptions

Target object Reference object ——  both in training and inference
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Architecture
Multi-Modal Inputs 3D Modal Inputs

. . . . pritt p3d
| -1 B4 1
Toert 1L 11

| € o

Teacher ... Student

S 11

| S >

Lalign l

Feature
Alignment . ’

L L L .
Descriptions —— . Ground Truth ——— Descriptions

| Decoder |
Layer

Target object . Reference object ——  both in training and inference
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Architecture
Multi-Modal Inputs 3D Modal Inputs

N

\ it F3d
l |

e ) I
Teacher ... V/J Student l

|
— — Il
_/ |
F Lalign I
jyer Alignment

. L L -
Descriptions —— . Ground Truth «——— Descriptions

Target object Reference object ——  both in training and inference
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Cross-Modal Fusion (CMF) Module

-+

-+

-4

-+

. Teacher Features . Student Features Masked Features



Experiments

3D Dense Captioning with Gound Truth Proposals
(Nr3D and ScanRefer)

ScanRefer Nr3D
Method Extra 2D C B-4 M R i B-4 M R

89.73 44.25 31.00 6450 [ 85.38 3952 31.23 68.18
106.11 49.07 32.25 65.54 | 85.40 40.51 31.36 68.84

X -Trans2Cap
X -Trans2Cap (C)

Scan2Cap [] X 65.79 3854 23.81 61.93 | 63.36 3207 2892 64.56
Scan2Cap (Inst) X 64.44 3689 2842 6042 | 61.89 3202 28.88 64.17
TransCap X 75.75 42.06 28.82 62.62 | 7060 3599 29.04 66.00
X-Trans2Cap % 87.09 44.12 30.67 64.37 | 80.02 37.90 30.48 67.64
X-Trans2Cap (C) X 89.46 44.46 30.71 64.55 | 81.44 39.08 30.79 68.15
Scan2Cap [9] 7 67.95 4149 2923 63.66 | 64.13 3298 2975 65.24
Scan2Cap (Inst) v 70.04 4157 29.67 64.10 | 64.00 33.19 29.53 65.29
TransCap 7 83.72 4424 3095 64.70 | 77.55 3725 30.63 67.43

7

7




Experiments

3D Dense Captioning with Detection Proposals
(Nr3D and ScanRefer)

Method Extra 2D Proposals C@0.25 B-4@025 M@025 R@0.25 | C@05 B-4@05 M@0.5 R@05 | mAP@0.5
Scan2cap [Y] X VoteNet 50.71 33.01 2547 53.60 33.93 21.58 21.04 43.03 32.46
TransCap X VoteNet 55.36 32.46 25.64 53.19 40.08 22.86 21.72 44.04 33.34

A -Trans2Cap X VoteNet 58.81 34.17 25.81 54.10 41.52 23.83 21.90 44.97 34.68
2D-3D Proj. [50] v Mask R-CNN 18.29 10.27 16.67 33.63 8.31 2.31 12.54 25.93 10.50
3D-2D Proj. [50] v VoteNet 19.73 17.86 19.83 40.68 11.47 8.56 15.73 31.65 31.83
Scan2cap [V] v VoteNet 56.82 34.18 26.29 55.27 39.08 23.32 21.97 4478 32.21
TransCap v VoteNet 60.04 35.04 26.27 54.46 43.12 24.25 22.15 44.72 34.34
A -Trans2Cap v VoteNet 61.83 35.65 26.61 54.70 43.87 25.05 22.46 45.28 35.31
Method Extra 2D | Proposals | C@0.25 B-4@0.25 M@0.25 R@025 | C@05 B-4@05 M@05 R@05 | mAP@0S5
Scan2cap X VoteNet 41.76 24.12 24.98 25,79 23.70 14.88 20.95 47.50 3217
TransCap X VoteNet 44.32 2563 2320 55.69 27.24 17.76 21.60 49.16 34.09
A'-Trans2Cap X VoteNet 47.26 27.38 2545 56.28 30.96 18.70 22,15 49.92 34.13
3D-2D Proj. v VoteNet 8.57 8.49 18.83 44.95 3.93 4.21 16.68 41.24 31.83
Scan2cap v VoteNet 42.24 24.43 25.07 55.88 24.10 15.01 21.01 47.95 32.21
TransCap v VoteNet 45.06 25.79 25.22 55.55 33.45 19.09 22.24 50.00 3371
A'-Trans2Cap v VoteNet 51.43 27.62 25.75 56.46 33.62 19.29 22.27 50.00 34.38




Experiments

Visualization

(a) Oracle DC

(b) Scan DC

whité bathtub

Scan2Cap: This is a white cabinet. It is to the right of the bed.
X-TransCap: This is a brown wooden cabinet. It is to the left of the bed.

Ground Truth: This cabinet is called a wardrobe. It is tall and wooden. It is

between the window and the bed.

Scan2Cap: The bathtub is brown . It is to the right of the toilet.

X-TransCap: This is a white bathtub. It is to the left of the toilet.
Ground Truth: This is a white bathtub. 1t is to the left of the toilet.

Scan2Cap
This is a white towel. It is to the left of

another towel.
I I 1

X-TransCap
This is a green towel. It is hanging on

the wall.

Ground Truth
A dark green towel. It is hanged in a
rod that is attached to the wall.

Scan2Cap
This is a white refrigerator. It is to the right
of the refrigerator.

X-TransCap
This is a white refrigerator. It is to the lefi of
the stove.

Ground Truth
This is a white refrigerator. It is to the left of
the stove.




X-Trans2Cap: Cross-Modal Knowledge Transfer using
Transformer for 3D Dense Captioning

Thanks for watching!

Zhihao Yuaniy, Xu Yaniy, Yinghong Liaoi,
Y ao Guoz, Guanbin Lis, Shuguang Cuii, Zhen Li

1 The Chinese University of Hong Kong (Shenzhen),
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2 Shanghai Jiao Tong University, 3 Sun Yat-sen University
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ArSDM: Colonoscopy Images Synthesis
with Adaptive Refinement Diffusion Models



Background

((1)Colonoscopy analysis, particularly automatic polyp segmentation and detection are essential for assisting clinical
diagnosis and treatment, while the scarcity of annotated data limits the effectiveness and generalization of existing

models.
((2) The quality of generated data by GANSs or other data augmentation methods is poor.

((3)Diffusion models have demonstrated remarkable progress in generating multiple modalities of medical data (CT,

MR], ...).



Overview of the Pipeline

GT Masks Original Images

~
Seo
~.
<

T t ¢ 7 Downstream Tasks .~

-
-
-
-
-
-
-
-
-

Segmentation

Detection .

Diffusion Sampler Synthesis Images



Pipeline

((1) Train a semantic diffusion model (our ArSDM).

((2)For each mask in the training set, sample a synthesized image, the synthesized dataset has the same number of image-

mask pairs as the original dataset.

((3) Combine the original diffusion training set with the synthesized dataset for training polyp segmentation and detection

models



Model
rchitecture

Condition

GT Mask c,
v
Fm———————
I Diffusion
U-Net o il

1 Process j % € A -
- : _ .

Noised x; L‘ l—l Estimated x; Sample x,

Re-Weighting . Diffusion Loss
Module ladpi/e
v
Refinement Loss
> 1 < PraNet
réne

Prediction Mask ¢,



Model Architecture

* Mask Conditioning
» Using the segmentation masks as conditions, similar to semantic masks but have only two categories:
foreground (polyp) and background (intestine wall)
* The conditional U-Net model 1s the same as SDM (Semantic Image Synthesis via Diffusion Models
https://arxiv.org/abs/2207.00050)

* Adaptive Loss Function

* Based on | loss, define a pixel-wise weights matrix that vests different weights according to the
size ratio of the polyp over the background.

* For coding, it is convenient to use the pixel values of the segmentation mask (0,1).
propose an adaptive loss function that vests different weights according to the
size ratio of the polyp over the background. Specifically, we define a pixel-wise
weights matrix W € RE*W with each entry -'u.-'.f‘_ ; to be:

s _[i-r p=1_#p=1)
_,, - HxW

where p = 1 means the pixel p at (h,w) belongs to the polyp region and p = 0
means it belongs to the background region. Thus, the loss function becomes:

, 2
Emlapti\-‘(‘ — E[,x, Co.e~N(0.I) |:” A ||E — €g {x!.-. £ Cﬂ)” :| (Bj



Model Architecture

* Mask Conditioning
* Adaptive Loss Function
* Refinement
» Using a pre-trained segmentation model to fine-tune the diffusion model, in which the U-Net

parameters are updated while the segmentation model parameters are fixed.

* For each time-step t, we need to sample an image, which is time-consuming.

Algorithm 1: Oune training iteration of ArSDM

Input: ¢ ~ Uniform({1,...,T}), xo ~ q(x0), co, € ~ N (0.1I)
Output: €, ¢y

1 x¢ = Vauxo + V1 — ae; X = Vauxo + V1 — aves (x4, t, o)

2 fori=t,....1 do

3 z~N(OIDifi>1elsez=0; Xi—1= % (5{; — )1,1':‘_\.':_69 (i, i.c{))) + oz
A W €k

4 end for

5 € = P(%o)

6

Take gradient descent step on Vg Liotal




Experimental Settings

Diffusion Training

* Training Set: Kvasir + CVC-ClinicDB (1450 image-mask pairs)
* Image Size: Padding to have the same height and width and then resize to 384 x 384

e Duration:
* with Refinement: around one-half NVIDIA A100 days (80GB Memory)

* w/o refinement: around one A100 day.

Diffusion Sampling

* DDIM sampler with T = 200

* Random noise as input and mask as a condition



Comparison Results

Polyp Segmentation

EndoScene ClinicDB Kvasir ColonDB ETIS | Owverall
Methods

mDice mlol]l mDice mloll mDice mlol mDice mloll mDice mloU|mUi{:E mlol]

PraNet 87.1 79.7 899 849 89.8 840 709 64.0 62.8 56.7| 740 67.5
+LDM  83.7 76.9 882 830 884 830 62.6 56.0 56.2 50.3| 67.8 61.7
+SDM  89.9 83.2 89.2 83.7 884 826 742 66.5 66.4 60.3| 76.4 69.6
+0Ours  89.7 827 93.3 88.5 89.9 B4.5 T76.1 68.9 75.5 68.1| 80.0 73.2

SANet 888 £1.5 91.6 859 904 B84.7 753 67.0 75.0 654|794 714
+LDM  72.7 60.5 88.83 828 837 827 643 554 58.0 49.2| 68.3 H9.8
+SDM  90.2 83.0 89.9 84.1 909 854 77.6 69.3 747 66.8| 804 T72.9
+0Ours 90.2 83.2 914 86.1 91.1 85.6 77.7T 70.0 78.0 69.5| 81.56 T4.1

PVE 90.0 83.3 93.7 B89 91.7 B6.4 808 727 TBT 7T0.6| 833 76.0
+LDM 882 812 923 871 912 857 787 704 780 696|819 742
+SDM  88.8 81.7 93.9 89.2 91.2 86.1 813 73.5 78T 711|834 76.3
+0urs &88.2 8§1.2 922 §7.5 91.5 86.3 81.7 73.8 B0.6 72.9| 84.0 76.7

+6.0%, +5.7%

+2.1%, +2.7%

+0.7%, +0.7%



Comparison Results

Polyp Detection

EndoScene ClinicDB Kvasir ColonDB ETIS | Owverall
AP Fil AP F1 AP Fi1 AP Fi1 AP F1 | AP F1

Center. 86.9 91.4 847 89.2 75.6 814 622 723 627 70.1|56.6 76.0
+LDM 841 844 90.4 899 813 8B1.8 734 T745H 652 7T1.7|62.0 76.9
+SDM  87.8 86.9 88.7 91.0 77.0 828 71.8 781 68.2 72.6|61.8 79.1
+0Ours &5.0 &89.1 86.1 90.8 T77.3 B4.7T T4.2 B0.2 68.T 75.6|65.7 B1l.3 +9.1%, +5.3%

Sparse. 899 87.8 814 864 756 802 782 73.2 63.8 624|637 732
+LDM 874 76.3 95.0 93.5 3815 588 B0.0 71.0 644 543|653 66.3
+SDM  94.5 90.5 88.7 86.5 79.0 80.5 81.4 76.8 67.8 67.1|65.2 T76.7
+Ours 92.8 86.2 922 90.6 81.6 82.3 80.1 79.8 72.4 70.4|/66.4 79.0 +2.7%, +5.8%

Methods

Deform. 98.1 94.4 89.7 899 80.2 744 82.2 75.5 653 5H4.7|645 718
+LDM 946 905 916 895 793 734 T8.0 73.2 69.0 64.0|63.4 733
+SDM 96.0 90.6 90.3 91.2 822 789 80.1 75.1 67.5 66.7|65.1 75.8
+O0urs 94.7 94.3 92.3 92.0 80.0 80.3 8l.4 77.3 74.1 69.3 |67.9 77.9 +3.4%, +6.1%




Visualization
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Colonscopy Video Generation
with Diffusion Models



PVDM Hsky-time-lapsei/l|Zkautoencoder, from scratch a
I\rchSummlt

Dataset: Sky Time lapse Training: 1 V100, 1 day z X = m g =
997 ExfiHm; 21t 1,172,641 i

Reconstructions



PVDM FLDPolypi/l|Zautoencoder, fl#;sky-time-lapse YN E

I\rchStfr%’nt

Dataset: LDPolyp Training: 1 V100, 1.6 days 2 K R MW W
100 -EX%)L& N ILa\/\ 24 789 I'I]DIT

Inputs Reconstructions



LVDM FLDPolyp)l|Zk 2D autoencoder, il ImageNet})l| 24X E Ia
ArchSummit
Dataset: LDPolyp Training: 1 V100, 1 day 2 R X W W E =
100 EXAW50; S4E 24,789 i

Reconstructions



LVDM-2 FLDPolypi)l|% unconditional diffusion model
(LVDM 5.1 release codes)

Dataset: LDPolyp
100 -EX'_ULﬁa TSNS 24 789 mﬁ

I\rchSumm|t

Training: 1 80GB A100, 1 day = # % # Ji &

Details: 3D-Unet 7xI1ER43 Attention
layer {Eattention

ST % batch_size 2 > 48 GB 877

Samples
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» ZEGvideo diffusion> k5B TETA AR HYRISR

« ZEG condition maskFKIFHITETT BEIH=)video diffusiont
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