

AIGC驱动的3D场景理解及 医学图像解析

香港中文大学(深圳) 助理教授 李镇博士

1 讲者介绍

- 香港大学博士(师从余益州教授),芝加哥大学访问学者(师从许锦波教授)
- 香港中文大学(深圳)理工学院/未来智联网络研究院 助理院长/教授, 校长青年学者
- 香港中文大学(深圳)深度比特实验室主任博士后:1名,博士生:8名,研究生:2名

李镇 助理教授 FNII 助理院长

人才 荣誉

- CASP12 接触图预测全球冠军,并作为AlphaFoldV1的基线方案
- PLOS CB 2018年创新与突破奖 (一年一例)
- 中国科协 2019年青年托举人才
- 2022年05月CAMEO蛋白打分月度第一, 2022 SemancticKITTI分割竞赛第一, 2023 CVPR

科研学术

- 主持国家自然科学基金青年均曾全球气象预测大赛第一,ICCV 2022 Urban3D第二等
- 主持深港A类项目 *深度学习辅助的RNA蛋白结构预测以及蛋白高亲和性RNA设计 * (300 万)
- CCF-腾讯犀牛鸟2019优秀奖, 2022年犀牛鸟专项
- 参与科技部国家重点研发项目
 - 一合作牵头国家自然科学基金重点项目,合作牵头粤深联合基金重点项目

- AIGC驱动的3D室内场景稠密描述及视觉定位
- AIGC驱动的3D高精度的说话人脸驱动及生成
- AIGC驱动的结肠镜图片生成及解析

○ 案例简介

• 300字以内进行概括性的案例介绍(突出亮点、案例独特性等)

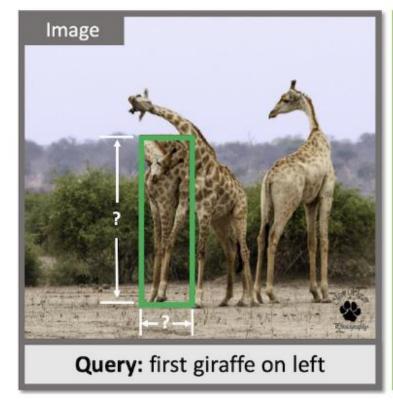
随着AIGC和ChatGPT等生成模型的迅速发展,我们探索出AIGC驱动的3D场景理解以及医疗场景的分析,并通过一系列自研的算法和工具,对AIGC算法辅助的下游应用进行了深入地研究,从3D场景的自动稠密描述,到室内场景的视觉定位,再到3D视觉驱动的高保真说话人脸生成,并推广到AIGC辅助的医疗场景的解析,我们均进行了深入地探讨。在本次分享中,我们将会从3D场景描述和定位,3D说话人脸生成,生成图片辅助的肠胃镜图片解析等方面,详解介绍我们应用方案的架构设计与工程实践,同时也会基于我们的经验分享在使用AIGC驱动的3D场景理解和医疗图像理解过程中的思考和对未来AIGC演进的展望。

• AIGC驱动的3D室内场景稠密描述及视觉定位

· AIGC驱动的3D高精度的说话人脸驱动及生成

• AIGC驱动的结肠镜图片生成及解析

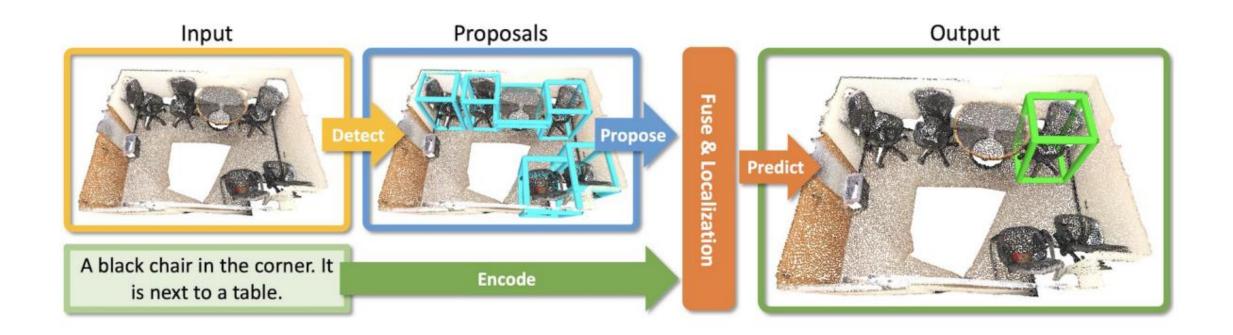
InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring


Zhihao Yuan 1,†, Xu Yan 1,†, Yinghong Liao 1, Ruimao Zhang 1 Sheng Wang 2, Zhen Li 1,*, and Shuguang Cui 1

The Chinese University of Hong Kong (Shenzhen),
Shenzhen Research Institute of Big Data
2 CryoEM Center, Southern University of Science and Technology

Visual Grounding:

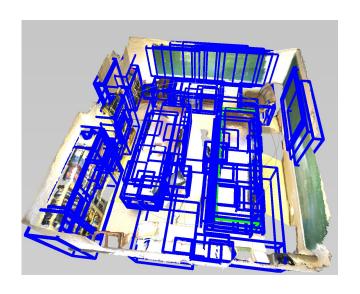
Visual grounding (VG) aims at localizing the desired objects or areas in an image or a 3D scene based on an object-related linguistic query



ScanRefer: 3D Object Localization in RGB-D Scans using Natural Language

ScanRefer:

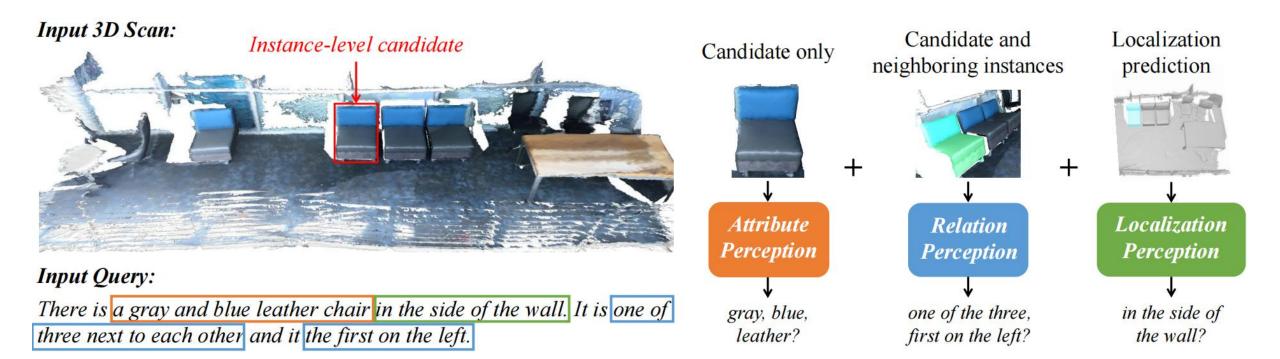
- 1. Exploiting object detection to generate proposal candidates;
- 2. Localize described object by fusing language features into candidates.



ScanRefer:

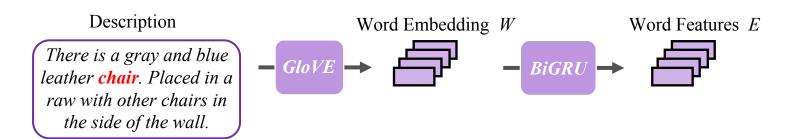
Cons:

- 1. The object proposals in the large 3D scene are usually redundant;
- 2. The appearance and attribute information is not sufficiently captured;
- 3. The relations among proposals and the ones between proposals and background are not fully studied.



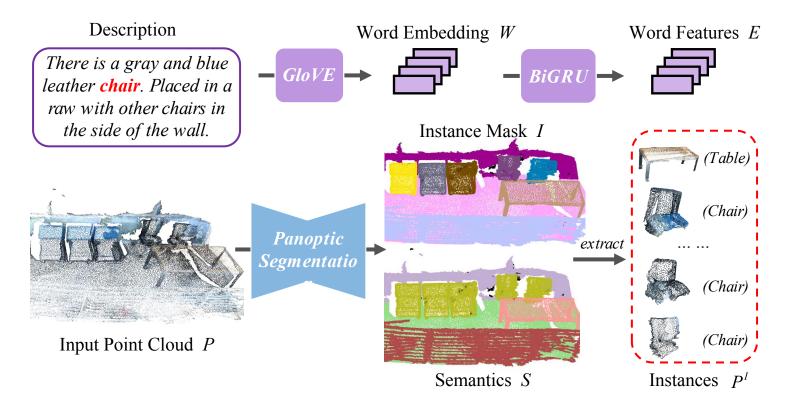
- ScanRefer generates 114 possible candidates after filtering proposals by their objectness scores;
- Each proposal's feature is generated by the detection framework;
- There is no relation reasoning among proposals

InstanceRefer:

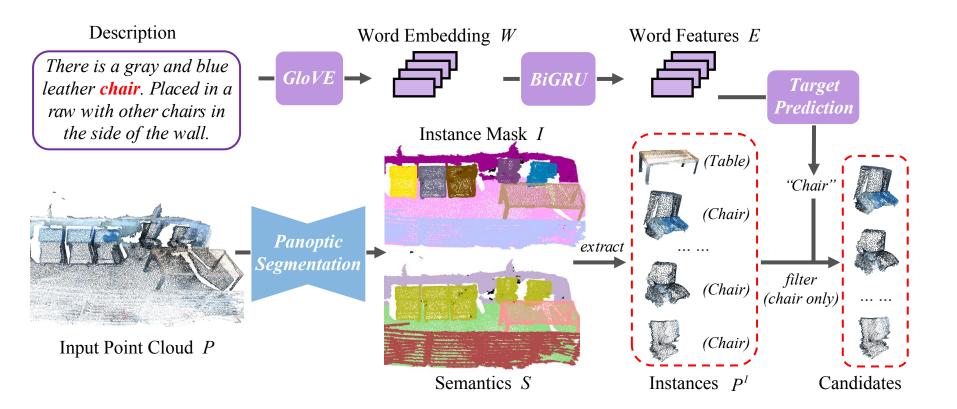

- 1. Instance-level candidate representation (small number);
- 2. Multi-level contextual inference (attribute, objects' relation and environment).

No ICCVOCTOBER 11-17

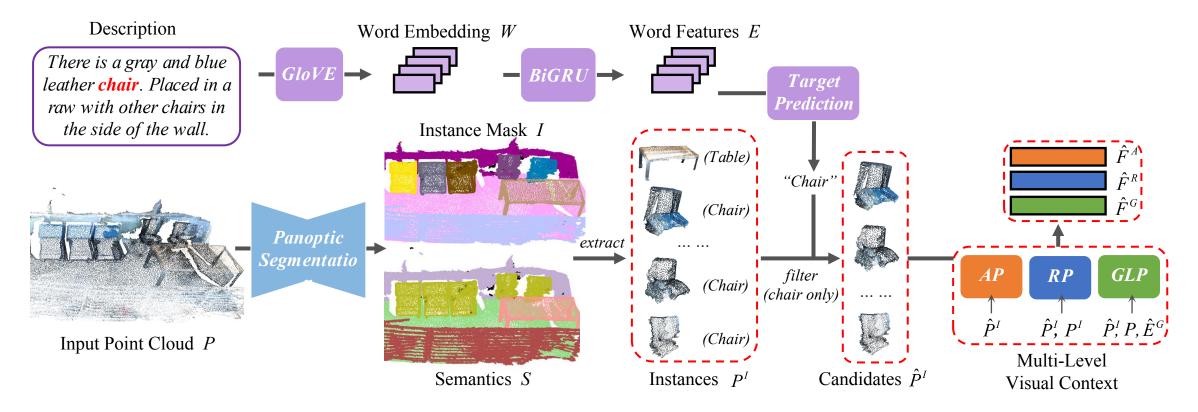
InstanceRefer Architecture:


Language feature encoding (the same as ScanRefer).

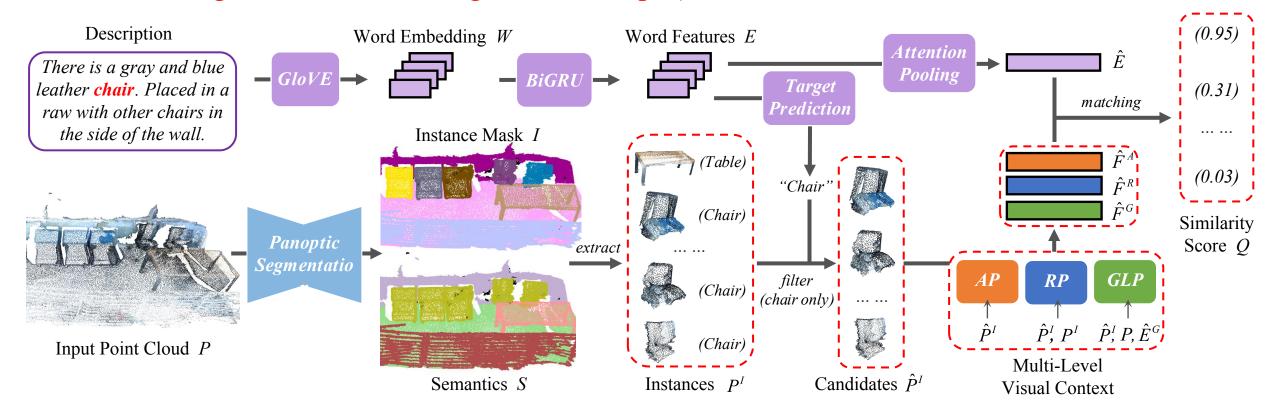
InstanceRefer Architecture:


Extracting instances through panoptic segmentation (predict instance and semantics).

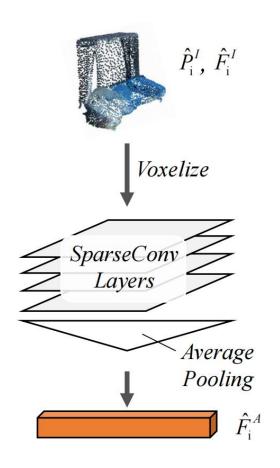
InstanceRefer Architecture:


Eliminating irrelative instances by the target category (inferred by language).

InstanceRefer Architecture:

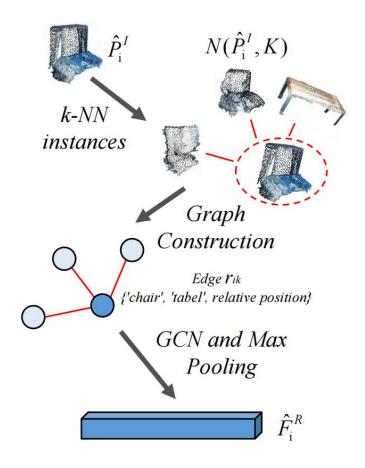

Generating visual feature of each candidate by multi-level referring (three novel modules are proposed).

InstanceRefer Architecture:


Scoring each candidate matching language and visual features (the candidate with the largest score will be regarded as output).

Specific Modules:

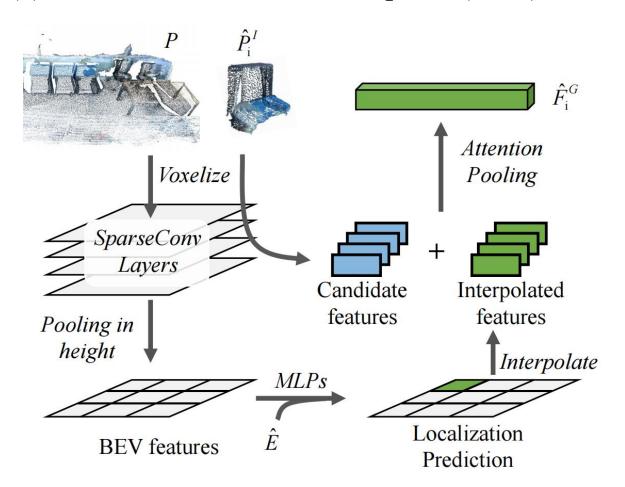
(a) Attribute Perception (AP) Module.



- It construct a four-layer Sparse Convolution (SparseConv) as the feature extractor;
- After an average pooling, the global attribute perception feature is obtained.

Specific Modules:

(b) Relation Perception (RP) Module.


- It uses k-nearest neighbors to construct a graph, where nodes' features are their semantics obtained by panoptic segmentation and edges are consisted of their semantics and relative position;
- Dynamic graph convolution network (DGCNN) is exploited to update the node's feature

$$\begin{split} r_{ik} &= \texttt{MLP}([\mathcal{C}(\hat{P}_i^I) - \mathcal{C}(P_k^I); S_i^I; S_k^I]) \\ h_{ik} &= \texttt{MLP}([P_k^I; S_k^I]), \ \forall \ P_k^I \in \mathcal{N}(\hat{P}_i^I, K) \\ \hat{F}_i^R &= \texttt{MaxPool}(\{r_{ik} \odot h_{ik}\}_{k=1}^K) \end{split}$$

Specific Modules:

(c) Global Localization Perception (GLP) Module.

- It uses SparseConv layers with height-pooling to generate a 3 × 3 bird-eyes-view (BEV) plane;
- By combining language feature, it predicts which grid the target object is located in;
- It interpolates probabilities and generates the global perception features by merging features from AP module.

Specific Modules:

- (d) Matching Module
 - A naive version by using Cosine similarity;
 - An enhance version by using modular co-attention from MCAN [1].
- (e) Contrastive Objective

$$L_{\text{mat}} = -\log \frac{\sum_{i=1}^{L} \exp(Q_i^+)}{\sum_{i=1}^{L} \exp(Q_i^+) + \sum_{i=L+1}^{M} \exp(Q_i^-)}$$

where Q+ and Q− denote the scores of positive and negative pairs.

ScanRefer:

Table 1. Comparison of localization results. TGNN replaces the original GRU layers with pre-trained BERT to extract language features. Our method follows TGNN's strategy of only taking coordinates (Geo) and color information (RGB) as input, while results of ScanRefer on benchmark are obtained by using additional normals (Nor) and multi-view features from a pre-trained 2D feature extractor. Scores for the test set are obtained from the online evaluation. Only the published methods are compared. Accessed on March 18, 2021.

		Unique		Multiple		Overall				
Method	Input	Acc@0.25	Acc@0.5	Acc@0.25	Acc@0.5	Acc@0.25	Acc@0.5			
Validation results										
SCRC [9]	RGB image	24.03	9.22	17.77	5.97	18.70	6.45			
One-stage [34]	RGB image	29.32	22.82	18.72	6.49	20.38	9.04			
ScanRefer [2] Geo + RGB		65.00	43.31	30.63	19.75	37.30	24.32			
TGNN [10]	[0] Geo + RGB		53.01	27.01	21.88	34.29	27.92			
TGNN[10]+BERT [5]	Geo + RGB	68.61	56.80	29.84	23.18	37.37	29.70			
IntanceRefer (Ours) Geo + RGB		77.45	66.83	31.27	24.77	40.23	32.93			
	Tes	st results (Scar	nRefer bench	mark)						
ScanRefer [2]	ScanRefer [2] Geo+Nor+Multiview		43.53	34.88	20.97	42.44	26.03			
TGNN [10]	Geo + RGB	62.40	53.30	28.20	21.30	35.90	28.50			
TGNN [10]+BERT [5]	and the control of th		58.94	33.12	25.26	41.02	32.81			
IntanceRefer (Ours)			66.69	34.57	26.88	44.27	35.80			

ScanRefer Benchmark

This table lists the benchmark results for the ScanRefer Localization Benchmark scenario.

		Unique	Unique	Multiple	Multiple	Overall	Overall
Method	Info	acc@0.25loU	acc@0.5loU	acc@0.25loU	acc@0.5loU	acc@0.25loU	acc@0.5loU
Metriou	illo	▽	∀	∀	∀	♥	*
InstanceRefer	P	0.7782 1	0.6669 1	0.3457 4	0.2688 2	0.4427 3	0.3580 1
Zhihao Yuan, Xu Yan, Referring. arXiv prepr	HED) (3.75% PC)	kuimao Zhang, Zhen Li*, Shugu	uang Cui: InstanceRefer: Coo	perative Holistic Understanding	for Visual Grounding on Poir	t Clouds through Instance Mult	ti-level Contextual
DetrRefer&Trick&A	Aug	0.7576 2	0.5515 4	0.4224 1	0.2933 1	0.4976 1	0.3512 2
PointGroup_MCAN	N	0.7510 3	0.6397 2	0.3271 6	0.2535 3	0.4222 5	0.3401 3
TGNN		0.6834 6	0.5894 3	0.3312 5	0.2526 4	0.4102 6	0.3281 4
Pin-Hao Huang, Han-	Hung Lee, Hwann	n-Tzong Chen, Tyng-Luh Liu: T	ext-Guided Graph Neural Net	work for Referring 3D Instance	Segmentation. AAAI 2021		
SRGA		0.7494 4	0.5128 5	0.3631 2	0.2218 5	0.4497 2	0.2871 5
ScanRefer	P	0.6859 5	0.4353 6	0.3488 3	0.2097 6	0.4244 4	0.2603 6
Dave Zhenyu Chen, A	Angel X. Chang, M	latthias Nießner: ScanRefer: 3	D Object Localization in RGB	-D Scans using Natural Langua	ge. 16th European Conference	ce on Computer Vision (ECCV)	, 2020
ScanRefer Baselin	ie	0.6422 7	0.4196 7	0.3090 7	0.18327	0.38377	0.23627

Descriptions

This is a padded chair with no arms and is checkerboard color blue and light blue or white. It belongs to the second table from the front of the class on the side with the windows and is the second chair closest the middle window.

Tall bookshelf in the corner of the room next to the window with blinds on it. The bookshelf is a double bookshelf and if packed fairly full with books.

It is the black door at the end of the hallway. It has a red and white sign on it. The white armchair is to right of an occasional table. The white armchair is on the right side against the wall on the wooden floor.

There are brown kitchen cabinets.
They are above the counter to the left of the range hood.

The table is south of the left-most couch. The table is a yellow square.

ScanRefer

Ours

Nr3D/Sr3D:

Table 2. Comparison of referring object identification on Nr3D and Sr3D datasets. Here 'easy' and 'hard' determined by whether there are more than two instances of the same object class in the scene. 'view-dependent' and 'view-independent' determined by whether the referring expression depending on camera view.

Dataset	Method	Easy	Hard	View-dep.	View-indep.	Overall
Nr3D	ReferIt3DNet [1] TGNN [10] IntanceRefer (Ours)	$43.6\% \pm 0.8\%$ $44.2\% \pm 0.4\%$ $46.0\% \pm 0.5\%$	$27.9\% \pm 0.7\%$ $30.6\% \pm 0.2\%$ $\mathbf{31.8\% \pm 0.4\%}$	$32.5\% \pm 0.7\%$ $35.8\% \pm 0.2\%$ $34.5\% \pm 0.6\%$	$37.1\% \pm 0.8\%$ $38.0\% \pm 0.3\%$ $41.9\% \pm 0.4\%$	$35.6\% \pm 0.7\%$ $37.3\% \pm 0.3\%$ $38.8\% \pm 0.4\%$
Sr3D	ReferIt3DNet [1] TGNN [10] IntanceRefer (Ours)	$44.7\% \pm 0.1\%$ $48.5\% \pm 0.2\%$ $\mathbf{51.1\% \pm 0.2\%}$	$31.5\% \pm 0.4\%$ $36.9\% \pm 0.5\%$ $\mathbf{40.5\% \pm 0.3\%}$	$39.2\% \pm 1.0\%$ $45.8\% \pm 1.1\%$ $45.4\% \pm 0.9\%$	$40.8\% \pm 0.1\%$ $45.0\% \pm 0.2\%$ $48.1\% \pm 0.3\%$	$40.8\% \pm 0.2\%$ $45.0\% \pm 0.2\%$ $48.0\% \pm 0.3\%$

InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring GitHub

Thanks for watching!

Zhihao Yuan 1,†, Xu Yan 1,†, Yinghong Liao 1, Ruimao Zhang 1 Sheng Wang 2, Zhen Li 1,*, and Shuguang Cui 1

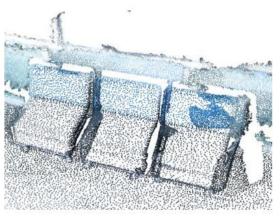
The Chinese University of Hong Kong (Shenzhen),
Shenzhen Research Institute of Big Data
2 CryoEM Center, Southern University of Science and Technology


X-Trans2Cap: Cross-Modal Knowledge Transfer using Transformer for 3D Dense Captioning

Zhihao Yuan_{1,†}, Xu Yan_{1,†}, Yinghong Liao₁, Yao Guo₂, Guanbin Li₃, Shuguang Cui₁, Zhen Li_{1,*}

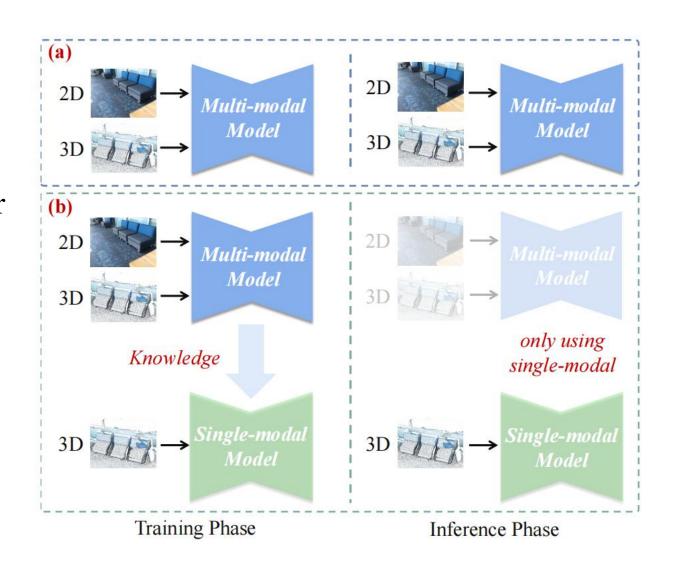
The Chinese University of Hong Kong (Shenzhen),
The Future Network of Intelligence Institute,
Shenzhen Research Institute of Big Data,
Shanghai Jiao Tong University, 3 Sun Yat-sen University

Task Description (3D Dense Captioning)

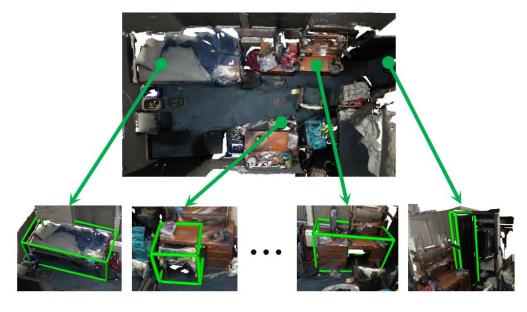

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Dave

Limitations

- The object representations in Scan2Cap are defective since they are solely learned from sparse 3D point clouds, thus failing to provide strong texture and color information compared with the ones generated from 2D images.
- It requires the extra 2D input in both training and inference phases. However, the extra 2D information is usually computation intensive and unavailable during inference.



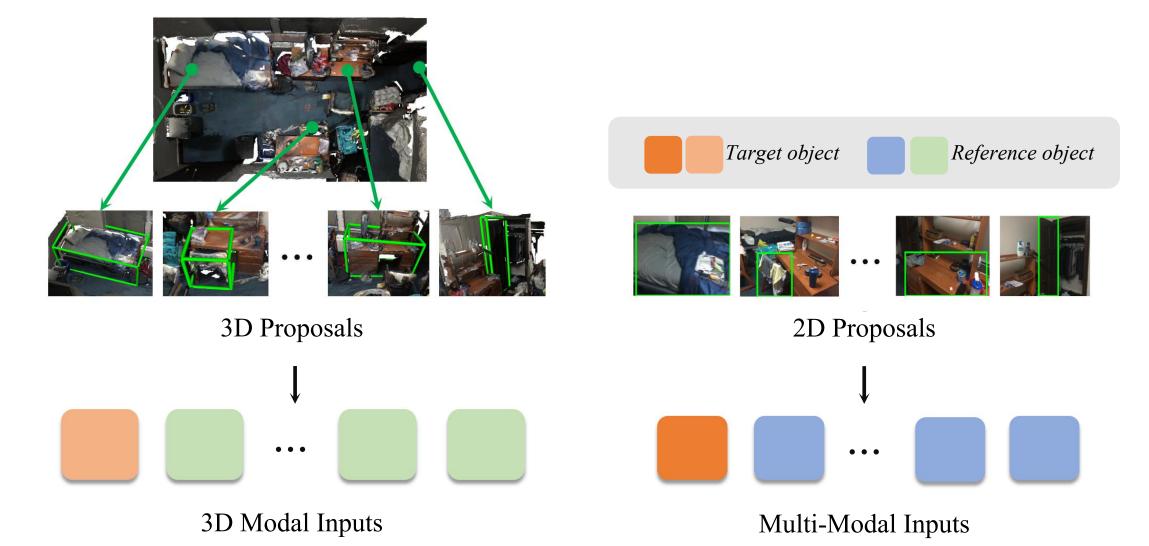
Motivation

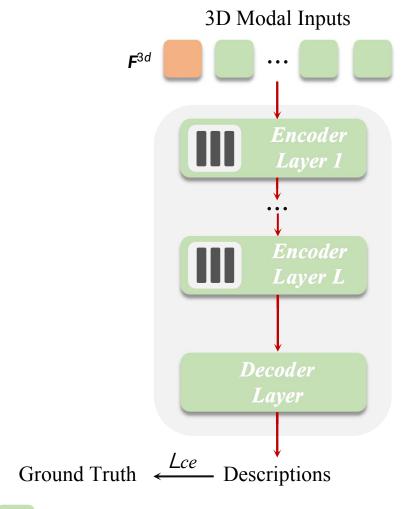

- We propose a Cross-Modal
 Knowledge Transfer framework on

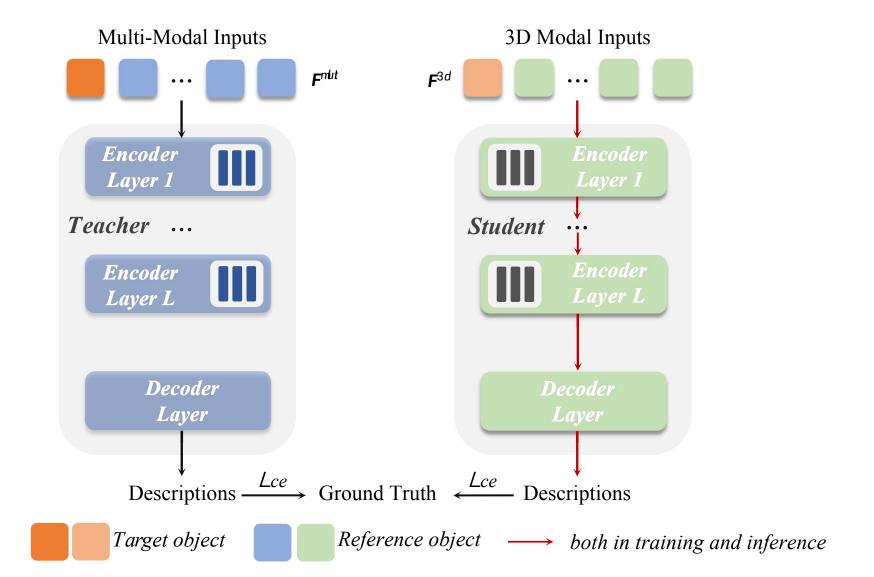
 3D dense captioning task.
- During the training phase, the teacher network exploits auxiliary 2D modality and guides the student network that only takes point clouds as input through the feature consistency constraints.
- A more faithful caption can be generated only using point clouds during the inference.

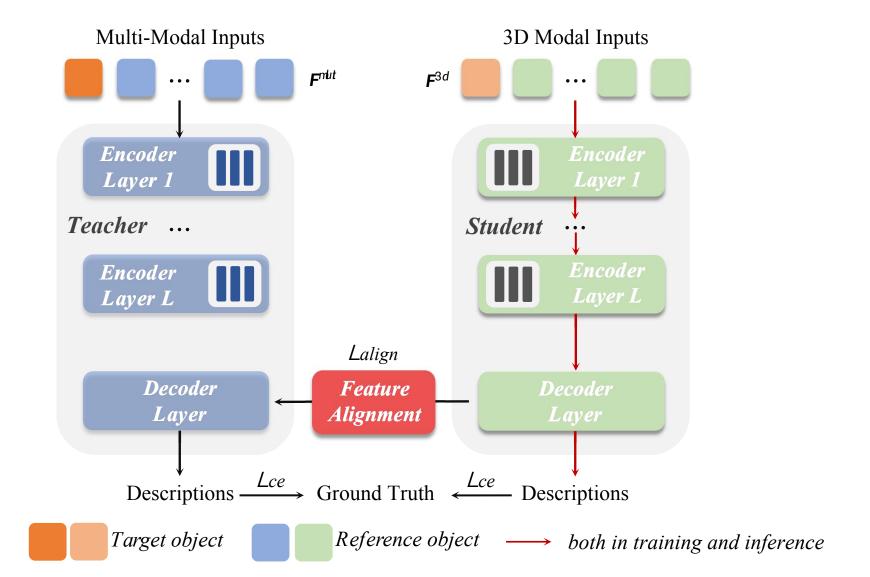
2D and 3D Inputs

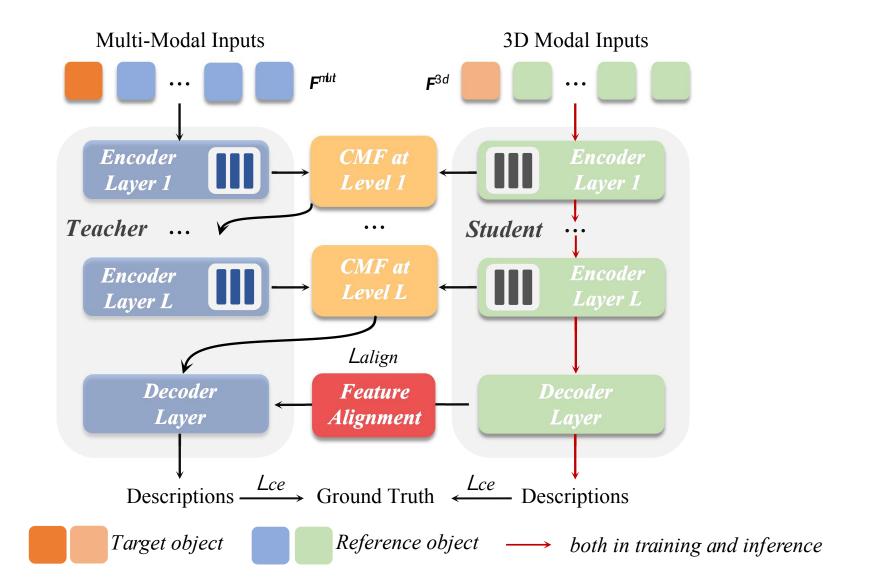
3D Proposals



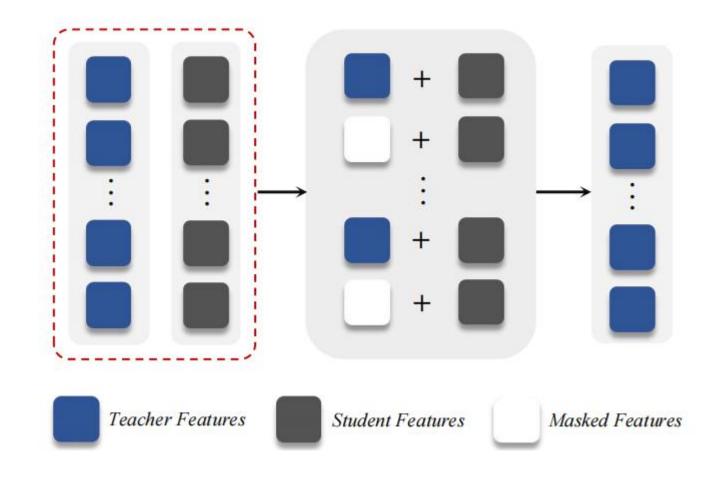

2D Proposals


2D and 3D Inputs




全球 CVPR JUNE 19-24 2022 NEW ORLEANS - LOUISIANA

全球 CVPR JUNE 19-24 2022 NEW ORLEANS - LOUISIANA



Arc CVPR JUNE 19-24 2022 NEW ORLEANS - LOUISIANA

Cross-Modal Fusion (CMF) Module

Experiments

3D Dense Captioning with Gound Truth Proposals (Nr3D and ScanRefer)

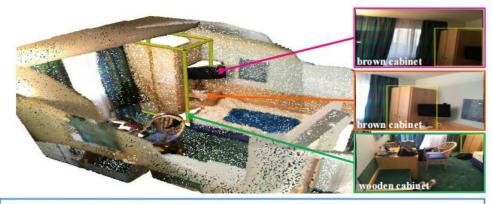
		ScanRefer				Nr3D				
Method	Extra 2D	C	B-4	M	R	C	B-4	M	R	
Scan2Cap [9]	X	65.79	38.54	28.81	61.93	63.36	32.07	28.92	64.56	
Scan2Cap (Inst)	X	64.44	36.89	28.42	60.42	61.89	32.02	28.88	64.17	
TransCap	×	75.75	42.06	28.82	62.62	70.60	35.99	29.04	66.00	
\mathcal{X} -Trans2Cap	×	87.09	44.12	30.67	64.37	80.02	37.90	30.48	67.64	
\mathcal{X} -Trans2Cap (C)	X	89.46	44.46	30.71	64.55	81.44	39.08	30.79	68.15	
Scan2Cap [9]	✓	67.95	41.49	29.23	63.66	64.13	32.98	29.75	65.24	
Scan2Cap (Inst)	✓	70.04	41.57	29.67	64.10	64.00	33.19	29.53	65.29	
TransCap	1	88.72	44.24	30.95	64.70	77.55	37.25	30.63	67.43	
\mathcal{X} -Trans2Cap	/	89.73	44.25	31.00	64.50	85.38	39.52	31.23	68.18	
X-Trans2Cap (C)	✓	106.11	49.07	32.25	65.54	85.40	40.51	31.36	68.84	

Experiments

3D Dense Captioning with Detection Proposals (Nr3D and ScanRefer)

Method	Extra 2D	Proposals	C@0.25	B-4@0.25	M@0.25	R@0.25	C@0.5	B-4@0.5	M@0.5	R@0.5	mAP@0.5
Scan2cap [9]	X	VoteNet	50.71	33.01	25.47	53.60	33.53	21.58	21.04	43.03	32.46
TransCap	×	VoteNet	55.36	32.46	25.64	53.19	40.08	22.86	21.72	44.04	33.34
\mathcal{X} -Trans2Cap	X	VoteNet	58.81	34.17	25.81	54.10	41.52	23.83	21.90	44.97	34.68
2D-3D Proj. [50]	/	Mask R-CNN	18.29	10.27	16.67	33.63	8.31	2.31	12.54	25.93	10.50
3D-2D Proj. [50]	/	VoteNet	19.73	17.86	19.83	40.68	11.47	8.56	15.73	31.65	31.83
Scan2cap [9]	/	VoteNet	56.82	34.18	26.29	55.27	39.08	23.32	21.97	44.78	32.21
TransCap	✓	VoteNet	60.04	35.04	26.27	54.46	43.12	24.25	22.15	44.72	34.34
\mathcal{X} -Trans2Cap	1	VoteNet	61.83	35.65	26.61	54.70	43.87	25.05	22.46	45.28	35.31

Method	Extra 2D	Proposals	C@0.25	B-4@0.25	M@0.25	R@0.25	C@0.5	B-4@0.5	M@0.5	R@0.5	mAP@0.5
Scan2cap	×	VoteNet	41.76	24.12	24.98	55.79	23.70	14.88	20.95	47.50	32.17
TransCap	×	VoteNet	44.32	25.63	25.25	55.69	27.24	17.76	21.60	49.16	34.09
\mathcal{X} -Trans2Cap	×	VoteNet	47.26	27.38	25.45	56.28	30.96	18.70	22.15	49.92	34.13
3D-2D Proj.	1	VoteNet	8.57	8.49	18.83	44.95	3.93	4.21	16.68	41.24	31.83
Scan2cap	1	VoteNet	42.24	24.43	25.07	55.88	24.10	15.01	21.01	47.95	32.21
TransCap	/	VoteNet	45.06	25.79	25.22	55.55	33.45	19.09	22.24	50.00	33.71
\mathcal{X} -Trans2Cap	✓	VoteNet	51.43	27.62	25.75	56.46	33.62	19.29	22.27	50.00	34.38


Experiments

Visualization

(a) Oracle DC

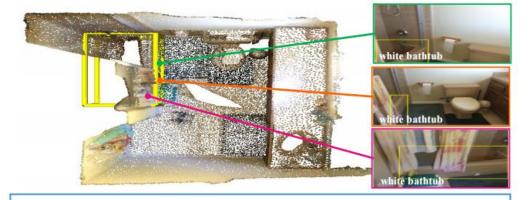

(b) Scan DC

Scan2Cap: This is a white cabinet. It is to the right of the bed.

X-TransCap: This is a brown wooden cabinet. It is to the left of the bed.

Ground Truth: This cabinet is called a wardrobe. It is tall and wooden. It is between the window and the bed.

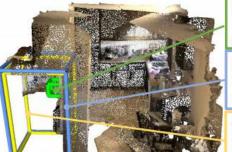
Scan2Cap


This is <u>a white towel</u>. It is to the left of another towel.

X-TransCap

This is a green towel. It is hanging on the wall.

Ground Truth


A dark green towel. It is hanged in a rod that is attached to the wall.

Scan2Cap: The bathtub is brown. It is to the right of the toilet.

X-TransCap: This is a white bathtub. It is to the left of the toilet.

Ground Truth: This is a white bathtub. It is to the left of the toilet.

Scan2Cap

This is a white refrigerator. It is to the right of the refrigerator.

X-TransCap

This is a white refrigerator. It is to the left of the stove.

Ground Truth

This is a white refrigerator. It is to the left of the stove.

X-Trans2Cap: Cross-Modal Knowledge Transfer using Transformer for 3D Dense Captioning

Thanks for watching!

Zhihao Yuan_{1,†}, Xu Yan_{1,†}, Yinghong Liao₁, Yao Guo₂, Guanbin Li₃, Shuguang Cui₁, Zhen Li_{1,*}

The Chinese University of Hong Kong (Shenzhen),
 The Future Network of Intelligence Institute,
 Shenzhen Research Institute of Big Data,
 Shanghai Jiao Tong University, 3 Sun Yat-sen University

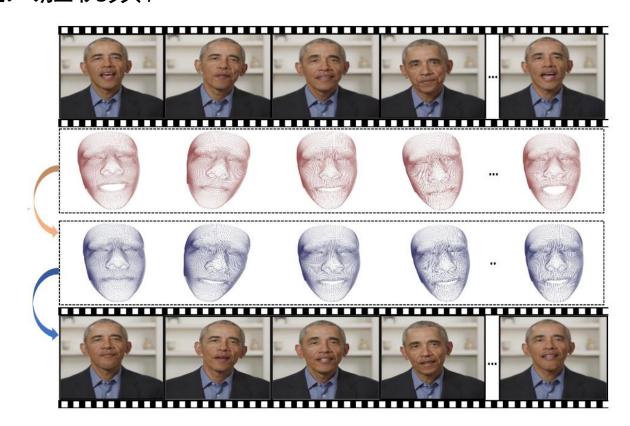
· AIGC驱动的3D室内场景稠密描述及视觉定位

• AIGC驱动的3D高精度的说话人脸驱动及生成

• AIGC驱动的结肠镜图片生成及解析

说话人脸

任务介绍

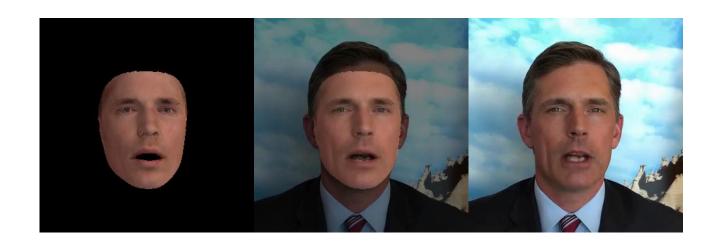

- ▶目标:
- 给定文本或语音作为驱动信息,同时给定人脸图片或视频提供人物信息,目标是生成人脸视频其嘴型与文本或语音内容保持一致;
- ▶挑战:
- 跨模态学习任务,语音/文本模态到图像模态的映射,需要设计多模态的特征提取器以及跨模态交互学习;
- 人类视觉系统对生成视频图像质量和语音-嘴型同步质量比较敏感,生成高质量的说话人脸视频有挑战;

说话人脸

已有成果

- ➤ 时序3DMM方案(利用点云解析相关算法预测脸部关键点)
- 利用精细3D人脸顶点进行语音到嘴型的显式监督,并考虑长时时序信息,得到稳定人脸视频;

点云解析驱动的高清说话人脸



生成结果

3D animation Blend result

Generated result

点云解析驱动的高清说话人脸

不同语言生成结果

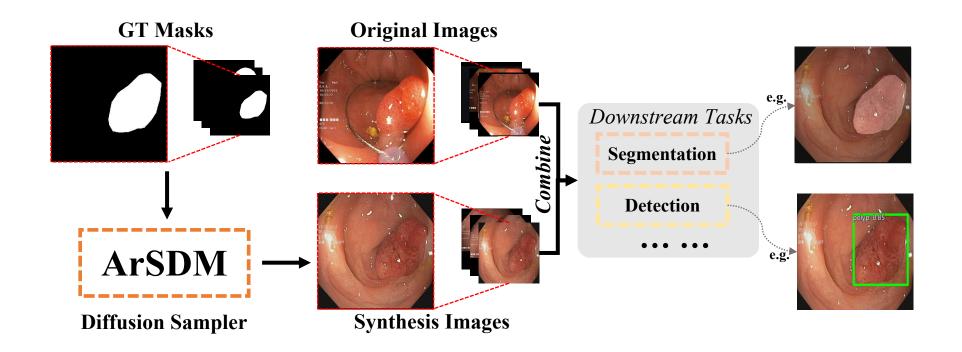

德语

点云解析驱动的高清说话人脸

不同语言生成结果

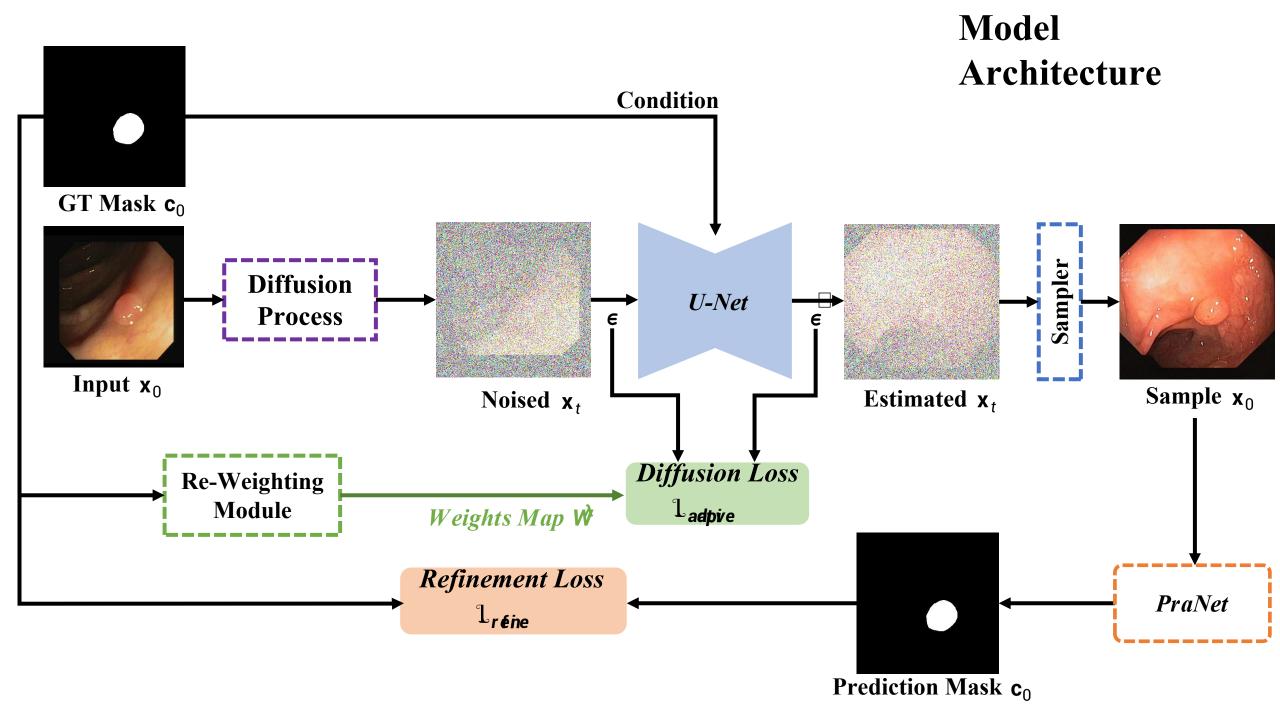
- · AIGC驱动的3D室内场景稠密描述及视觉定位
- · AIGC驱动的3D高精度的说话人脸驱动及生成
- AIGC驱动的结肠镜图片生成及解析

ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Diffusion Models


Background

((1))Colonoscopy analysis, particularly automatic polyp segmentation and detection are essential for assisting clinical diagnosis and treatment, while the scarcity of annotated data limits the effectiveness and generalization of existing models.

((2)) The quality of generated data by GANs or other data augmentation methods is poor.


((3)) Diffusion models have demonstrated remarkable progress in generating multiple modalities of medical data (CT, MRI, ...).

Overview of the Pipeline

Pipeline

- ((1)) Train a semantic diffusion model (our ArSDM).
- ((2)) For each mask in the training set, sample a synthesized image, the synthesized dataset has the same number of imagemask pairs as the original dataset.
- ((3)) Combine the original diffusion training set with the synthesized dataset for training polyp segmentation and detection models

Model Architecture

Mask Conditioning

- Using the segmentation masks as conditions, similar to semantic masks but have only two categories: foreground (polyp) and background (intestine wall)
- The conditional U-Net model is the same as SDM (Semantic Image Synthesis via Diffusion Models https://arxiv.org/abs/2207.00050)

Adaptive Loss Function

- Based on I_1 loss, define a pixel-wise weights matrix that vests different weights according to the size ratio of the polyp over the background.
- For coding, it is convenient to use the pixel values of the segmentation mask (0,1). propose an adaptive loss function that vests different weights according to the size ratio of the polyp over the background. Specifically, we define a pixel-wise weights matrix $W^{\lambda} \in \mathbb{R}^{H \times W}$ with each entry $w_{i,j}^{\lambda}$ to be:

$$w_{i,j}^{\lambda} = \begin{cases} 1 - r & , p = 1 \\ r & , p = 0 \end{cases}, \qquad r = \frac{\#(p = 1)}{H \times W}$$
 (7)

where p = 1 means the pixel p at (h, w) belongs to the polyp region and p = 0 means it belongs to the background region. Thus, the loss function becomes:

$$\mathcal{L}_{\text{adaptive}} = \mathbb{E}_{t, \mathbf{x}_t, \mathbf{c}_0, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[W^{\lambda} \cdot \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} \left(\mathbf{x}_t, t, \mathbf{c}_0 \right) \|^2 \right]$$
(8)

Model Architecture

- Mask Conditioning
- Adaptive Loss Function
- Refinement
 - Using a pre-trained segmentation model to fine-tune the diffusion model, in which the U-Net parameters are updated while the segmentation model parameters are fixed.
 - For each time-step t, we need to sample an image, which is time-consuming.

```
Algorithm 1: One training iteration of ArSDM

Input: t \sim \text{Uniform}(\{1,...,T\}), \mathbf{x}_0 \sim q(\mathbf{x}_0), \mathbf{c}_0, \boldsymbol{\epsilon} \sim \mathcal{N}\left(\mathbf{0},\mathbf{I}\right)

Output: \tilde{\boldsymbol{\epsilon}}, \tilde{\mathbf{c}}_0

1 \mathbf{x}_t = \sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1-\bar{\alpha}_t}\boldsymbol{\epsilon}; \tilde{\mathbf{x}}_t = \sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1-\bar{\alpha}_t}\boldsymbol{\epsilon}\theta (\mathbf{x}_t,t,\mathbf{c}_0)

2 for i=t,...,1 do

3 \mathbf{z} \sim \mathcal{N}(\mathbf{0},\mathbf{I}) if i>1, else \mathbf{z}=\mathbf{0}; \tilde{\mathbf{x}}_{i-1} = \frac{1}{\sqrt{\bar{\alpha}_i}}\left(\tilde{\mathbf{x}}_i - \frac{1-\alpha_i}{\sqrt{1-\bar{\alpha}_i}}\boldsymbol{\epsilon}\theta\left(\tilde{\mathbf{x}}_i,i,\mathbf{c}_0\right)\right) + \sigma_i\mathbf{z}

4 end for

5 \tilde{\mathbf{c}}_0 = \mathcal{P}(\tilde{\mathbf{x}}_0)

6 Take gradient descent step on \nabla_{\theta}\mathcal{L}_{\text{total}}
```

Experimental Settings

Diffusion Training

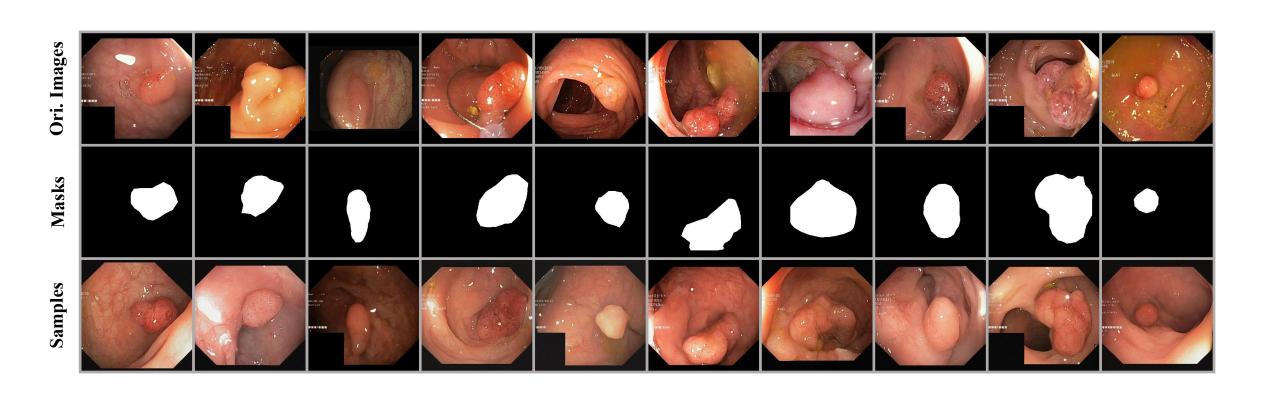
- Training Set: Kvasir + CVC-ClinicDB (1450 image-mask pairs)
- Image Size: Padding to have the same height and width and then resize to 384×384
- Duration:
 - with Refinement: around one-half NVIDIA A100 days (80GB Memory)
 - w/o refinement: around one A100 day.

Diffusion Sampling

- DDIM sampler with T = 200
- Random noise as input and mask as a condition

Comparison Results

Polyp Segmentation


Methods	EndoScene		ClinicDB		Kvasir		ColonDB		ETIS		Overall			
	mDice	mIoU	mDice	mloU	mDice	mIoU	mDice	mloU	mDice	mIoU	mDice	mloU		
PraNet	87.1	79.7	89.9	84.9	89.8	84.0	70.9	64.0	62.8	56.7	74.0	67.5		
+LDM	83.7	76.9	88.2	83.5	88.4	83.0	62.6	56.0	56.2	50.3	67.8	61.7		
+SDM	89.9	83.2	89.2	83.7	88.4	82.6	74.2	66.5	66.4	60.3	76.4	69.6		
+Ours	89.7	82.7	93.3	88.5	89.9	84.5	76.1	68.9	75.5	68.1	80.0	73.2	+6.0%,	+5.7%
SANet	88.8	81.5	91.6	85.9	90.4	84.7	75.3	67.0	75.0	65.4	79.4	71.4		
+LDM	72.7	60.5	88.8	82.8	88.7	82.7	64.3	55.4	58.0	49.2	68.3	59.8		
+SDM	90.2	83.0	89.9	84.1	90.9	85.4	77.6	69.3	74.7	66.8	80.4	72.9		
+Ours	90.2	83.2	91.4	86.1	91.1	85.6	77.7	70.0	78.0	69.5	81.5	74.1	+2.1%,	+2.7%
PVT	90.0	83.3	93.7	88.9	91.7	86.4	80.8	72.7	78.7	70.6	83.3	76.0		
+LDM	88.2	81.2	92.3	87.1	91.2	85.7	78.7	70.4	78.0	69.6	81.9	74.2		
+SDM	88.8	81.7	93.9	89.2	91.2	86.1	81.3	73.5	78.7	71.1	83.4	76.3		
+Ours	88.2	81.2	92.2	87.5	91.5	86.3	81.7	73.8	80.6	72.9	84.0	76.7	+0.7%,	+0.7%

Comparison Results

Polyp Detection

Methods	EndoScene		ClinicDB		Kvasir		ColonDB		ETIS		Overall			
	AP	F1	AP	F1	AP	F1	AP	F1	AP	F1	AP	F1		
Center.	86.9	91.4	84.7	89.2	75.6	81.4	62.2	72.3	62.7	70.1	56.6	76.0		
+LDM	84.1	84.4	90.4	89.9	81.3	81.8	73.4	74.5	65.2	71.7	62.0	76.9		
+SDM	87.8	86.9	88.7	91.0	77.0	82.8	71.8	78.1	68.2	72.6	61.8	79.1		
+Ours	85.0	89.1	86.1	90.8	77.3	84.7	74.2	80.2	68.7	75.6	65.7	81.3	+9.1%,	+5.3%
Sparse.	89.9	87.8	81.4	86.4	75.6	80.2	78.2	73.2	63.8	62.4	63.7	73.2		
+LDM	87.4	76.3	95.0	93.5	81.5	58.8	80.0	71.0	64.4	54.3	65.3	66.3		
+SDM	94.5	90.5	88.7	86.5	79.0	80.5	81.4	76.8	67.8	67.1	65.2	76.7		
+Ours	92.8	86.2	92.2	90.6	81.6	82.3	80.1	79.8	72.4	70.4	66.4	79.0	+2.7%,	+5.8%
Deform.	98.1	94.4	89.7	89.9	80.2	74.4	82.2	75.5	65.3	54.7	64.5	71.8		
+LDM	94.6	90.5	91.6	89.5	79.3	73.4	78.0	73.2	69.0	64.0	63.4	73.3		
+SDM	96.0	90.6	90.3	91.2	82.2	78.9	80.1	75.1	67.5	66.7	65.1	75.8		
+Ours	94.7	94.3	92.3	92.0	80.0	80.3	81.4	77.3	74.1	69.3	67.9	77.9	+3.4%,	+6.19

Visualization

Colonscopy Video Generation with Diffusion Models

PVDM

用sky-time-lapse训练autoencoder, from scratch

ArchSummit 全球架构师峰会

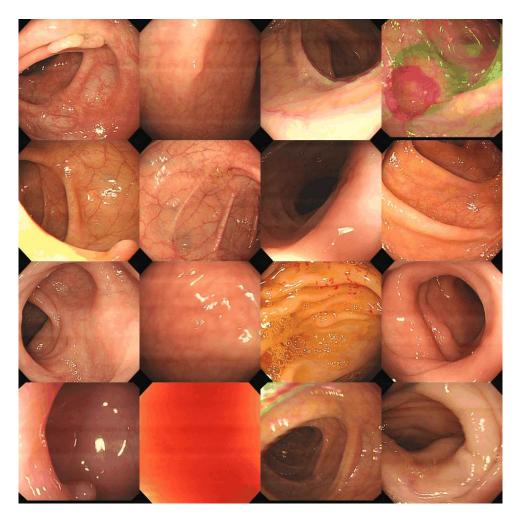
Dataset: Sky Time-lapse

997 段视频; 总共 1,172,641 帧

Inputs

Training: 1 V100, 1 day

Reconstructions


PVDM

用LDPolyp训练autoencoder, 加载sky-time-lapse的权重

∧rchSummit 全 球 架 构 师 峰 会

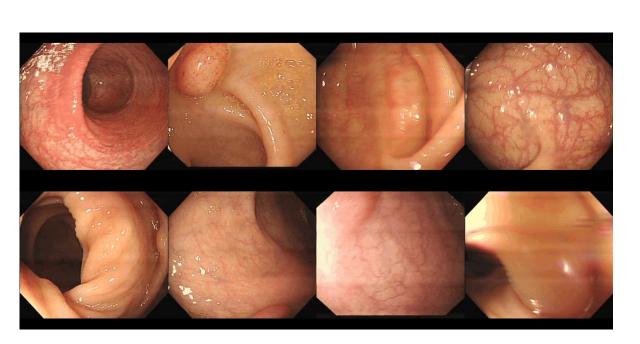
Dataset: LDPolyp

100 段视频; 总共 24,789 帧

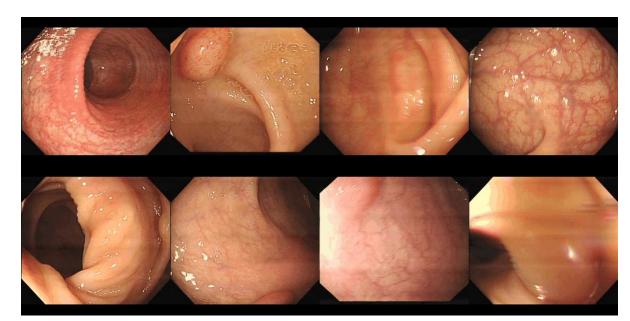
Inputs

Training: 1 V100, 1.6 days

Reconstructions


LVDM

用LDPolyp训练 2D autoencoder, 加载ImageNet训练权重


∧rchSummit 全 球 架 构 师 峰 会

Dataset: LDPolyp

100 段视频; 总共 24,789 帧

Training: 1 V100, 1 day

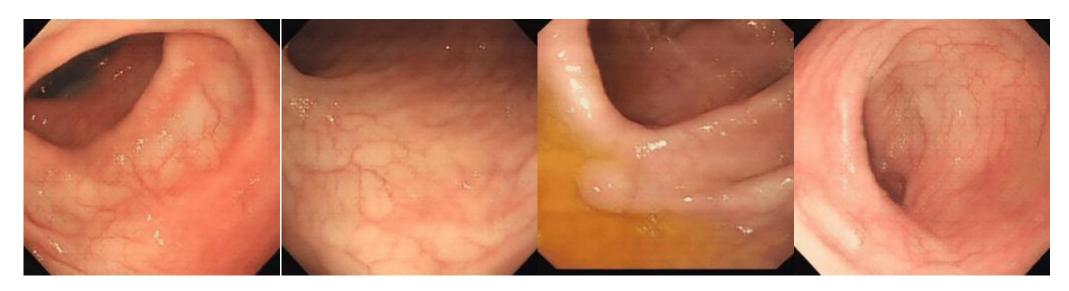
LVDM-2

用LDPolyp训练 unconditional diffusion model

(LVDM 5.1 release codes)

Dataset: LDPolyp

100 段视频; 总共 24,789 帧



Training: 1 80GB A100, 1 day

Details: 3D-Unet 添加部分Attention

layer / fattention

参数过多, batch_size 2 -> 48 GB 显存

Samples

下一步启示

• 进一步优化多模态在3D场景的解析与生成

• 结合video diffusion来强化说话人脸的效果

• 结合condition mask来进行医疗图像场景的video diffusion生成