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The discovery of 
something invisible



The Invisible Interface

Ubiquitous 

Easy and responsive

Just works!

The endeavor to make things useful



Real-time Decisions
that powers your business

Fraud prevention Personalization Customer support Dynamic pricing/discounting
Trending products Risk Assessment      Account Take Over

Ads
ETA Network analysis Sentiment analysis Object 

detection
…



The world is moving towards real-time

● Instacart: The Journey to Real-Time Machine Learning (2022)
○ Directly reduces millions of fraud-related costs annually.

● LinkedIn’s Real-time Anti-abuse (2022)
○ LinkedIn moved from an offline pipeline (hours) to real-time pipeline (minutes), and saw 

30% increase in bad actors caught online and 21% improvement in fake account detection.
● How WhatsApp catches and fights abuse (2022 | slides) 

○ A few 100ms delay can increase the spam by 20-30%.
● How Pinterest Leverages Realtime User Actions in Recommendation to Boost Engagement (2022)

○ According to Pinterest, this “has been one of our most impactful innovations recently, 
increasing Home feed engagement by 11% while reducing Pinner hide volume by 10%.”

● Airbnb: Real-time Personalization using Embeddings for Search Ranking (2018)
○ Moving from offline scoring to online scoring grows bookings by +5.1%
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https://tech.instacart.com/lessons-learned-the-journey-to-real-time-machine-learning-at-instacart-942f3a656af3
https://youtu.be/QuFWFQSdWJE?t=4359
https://www.youtube.com/watch?v=hdlW2kKkm3A&t=210s
https://docs.google.com/presentation/d/1W0sjPiNxNJIDUrW8FiEVkdeDpQll7ArTWSQk7u1fl2E/edit#slide=id.g1ab5f420c22_0_19
https://medium.com/pinterest-engineering/how-pinterest-leverages-realtime-user-actions-in-recommendation-to-boost-homefeed-engagement-volume-165ae2e8cde8
https://dl.acm.org/doi/pdf/10.1145/3219819.3219885


Real-time Decisions

Data Fabric for Real-time AI

Data Infrastructure 

Exploration & 
Research

Model Architecture 
& Turning

Model Analysis 
& Selection

Ingestion & 
Transport

Security & 
Governance

Multi-tenancy
Isolation

Data Sources Storage Query & Compute

LLM Prompt 
Engineering

Workflow 
Orchestration

Analytics /
Visualization



Model Serving

Model Training

Model 
MonitoringModel Evaluation

Prediction Input

Training Input

Data 
MonitoringData Model Flow

Data Flow

Product 
Ecosystem

Analytics 
ecosystem



The hard things towards 
real-time decisions

● Data silo and staleness
● Collaboration overhead 
● Tech complexity





Challenge 1 : From 
Experimentation to Production 

● Slow prototyping
● Local vs. remote execution
● Divergent language & runtime



Local Experimentation with Traditional Models



Local Experimentation with LLMs





Sources

Feature store
online + offline

Prediction 
service

Feature API

Create, experiment, & 
deploy features

Computation engines

Training
service

Feature catalog

Data 
scientists

Central repo



Local/Single Machine Remote/Distributed

Need an invisible interface to plug into compute ecosystems



Declare features with familiar APIs

@transformation
def average_transaction_amount_by_merchant(
    tx: Transactions, 
    wspec: WindowSpec):

return tx.groupby(["cc_num", "merchant"])["amt"].window(wspec).mean()
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Workload Compiler / 
Optimizer

Deployment

Relational 
Expression

@transformation
def transaction_count(tx: Transactions, wspec: WindowSpec):
   return tx[tx.status == "failed"].groupby("account_id").window(wspec).count()

Data Science Friendly: Python <> SQL



Workload 
Compiler/Optimizer

Deployment

Relational 
Expression

@transformation
def transaction_count(tx: Transactions, wspec: WindowSpec):
   return tx[tx.status == "failed"].groupby("account_id").window(wspec).count()

Same code can run on different computation engines

Compile into a relational expression (RE), which 
is SQL equivalent

Intermediate
Representation

Compile & optimize RE into the computation 
engine 
(e.g., Panda, DuckDb, Flink, Spark) best suited for 
the job

Spin up and manage computation jobs



Solution 1 : Relational 
Expression based Compilation

● Unified yet familiar API 
● Pluggable to many compute engines
● Minimize human error
● Prototype in minutes



Challenge 2: Streaming and 
Batch Divided

● Evolving architecture
● Difficult to backfill 
● Train-predict inconsistencies



Data Source

In-motion Compute

At-rest Compute

Online 
Storage

Offline 
Storage

 Online Query 
(serving)

Mixed Query (backfill)

Offline Query 
(training)

Lambda Architecture



Kappa (Streaming) Architecture

Data Source In-motion Compute
(Backfill from historical log)

Materialized 
Views

 Online Query 
(serving)

Offline Query 
(training)

batch transformation

streaming transformation



Unified Architecture

Data Source
In-motion Compute

(intelligent backfill from dual 
sources)

Materialized 
Views

 Online Query 
(serving)

Offline Query 
(training)

batch transformation

streaming transformation

DWH backed 
logs

Backing



Batch and streaming source unified to simplify backfill

Time

DWH

Stream

Dual source 
cutover



Streaming Leaning Batch Leaning

Need an invisible interface to plug into storage ecosystems



Data Fabric for a Streaming Pipeline



Data Fabric for a Unified Backfill Pipeline



Training dataset backfill requires point-in-time correctness

Time

Feature data

Feature data

Feature data

Prediction
events

Feature data



Point-in-time joins to generate training data
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Proprietary & Confidential

Given a spine (entity keys + timestamp + label), join features to generate training data

spine_df

train_df = pitc_join_features(
    spine_df,
    features=[
       "tx_max_1h",
       "user_unique_ip_30d",
    ],
)

inference_ts tid cc_num user_id is_fraud

21:30 0122 2 1 0

21:40 0298 4 1 0

21:55 7539 6 3 1

inference_ts tid cc_num user_id is_fraud tx_max_1h user_unique_ip_30d

21:30 0122 2 1 1 … …

21:40 0298 4 1 1 … …

21:55 7539 6 3 3 … …

ts cc_num tx_max_1h

9:20 2 …

10:24 2 …

20:00 4 …

cc_num_tx_max_1h

ts user_id unique_ip_30d

6:00 1 …

6:00 3 …

6:00 5 …

user_unique_id_30d



Solution 2: Abstract streaming 
and batch data storage

● Unified streaming & batch source
● Unified online & offline feature stores
● Pluggable to most storage technologies



Challenge 3: It should just work! 

● Cost, latency, correctness surprises!
● Lack optimizations knobs



Batch processing
(cheap and correct)

Cost Latency

Correctness

Stream processing without 
consistency

(fast and cheap)

Stream processing with 
consistency enforced

(fast and correct)



Workload Compilation

Optimization

Relational 
Expression

@transformation
def transaction_count(tx: Transactions, wspec: WindowSpec):
   return tx[tx.status == "failed"].groupby("account_id").window(wspec).count()

Optimization 

Various intelligent optimization can be done to 
make appropriate tradeoff across storage and 
compute systems.

Deployment



Customer managed in your own cloud

Guardrail for schema changes
Tunable workload optimization 

Claypot Feature
SDK (Python)

Feature Catalog 

Online
store

Offline 
store

Feature 
Serving

Filter Scan Scan

UnionJoin

Unified Processing

Filter



Solution 3: Optimization knobs

● Abstract optimization complexity
● User controls with high level knobs
● Trust, no surprises!



Make invisible interface 
possible!

● Ubiquitous 
● Easy and responsive
● Just works!

https://zhenzhongxu.com/
zhenzhong@claypot.ai

the invisible interface


