
Invisible Interfaces

Zhenzhong Xu
Cofounder & CTO @ claypot.ai
July, 2023

Considerations for Abstracting Complexities of
a Real-time ML Platform

The discovery of
something invisible

The Invisible Interface

Ubiquitous

Easy and responsive

Just works!

The endeavor to make things useful

Real-time Decisions
that powers your business

Fraud prevention Personalization Customer support Dynamic pricing/discounting
Trending products Risk Assessment Account Take Over

Ads
ETA Network analysis Sentiment analysis Object

detection
…

The world is moving towards real-time

● Instacart: The Journey to Real-Time Machine Learning (2022)
○ Directly reduces millions of fraud-related costs annually.

● LinkedIn’s Real-time Anti-abuse (2022)
○ LinkedIn moved from an offline pipeline (hours) to real-time pipeline (minutes), and saw

30% increase in bad actors caught online and 21% improvement in fake account detection.
● How WhatsApp catches and fights abuse (2022 | slides)

○ A few 100ms delay can increase the spam by 20-30%.
● How Pinterest Leverages Realtime User Actions in Recommendation to Boost Engagement (2022)

○ According to Pinterest, this “has been one of our most impactful innovations recently,
increasing Home feed engagement by 11% while reducing Pinner hide volume by 10%.”

● Airbnb: Real-time Personalization using Embeddings for Search Ranking (2018)
○ Moving from offline scoring to online scoring grows bookings by +5.1%

5

https://tech.instacart.com/lessons-learned-the-journey-to-real-time-machine-learning-at-instacart-942f3a656af3
https://youtu.be/QuFWFQSdWJE?t=4359
https://www.youtube.com/watch?v=hdlW2kKkm3A&t=210s
https://docs.google.com/presentation/d/1W0sjPiNxNJIDUrW8FiEVkdeDpQll7ArTWSQk7u1fl2E/edit#slide=id.g1ab5f420c22_0_19
https://medium.com/pinterest-engineering/how-pinterest-leverages-realtime-user-actions-in-recommendation-to-boost-homefeed-engagement-volume-165ae2e8cde8
https://dl.acm.org/doi/pdf/10.1145/3219819.3219885

Real-time Decisions

Data Fabric for Real-time AI

Data Infrastructure

Exploration &
Research

Model Architecture
& Turning

Model Analysis
& Selection

Ingestion &
Transport

Security &
Governance

Multi-tenancy
Isolation

Data Sources Storage Query & Compute

LLM Prompt
Engineering

Workflow
Orchestration

Analytics /
Visualization

Model Serving

Model Training

Model
MonitoringModel Evaluation

Prediction Input

Training Input

Data
MonitoringData Model Flow

Data Flow

Product
Ecosystem

Analytics
ecosystem

The hard things towards
real-time decisions

● Data silo and staleness
● Collaboration overhead
● Tech complexity

Challenge 1 : From
Experimentation to Production

● Slow prototyping
● Local vs. remote execution
● Divergent language & runtime

Local Experimentation with Traditional Models

Local Experimentation with LLMs

Sources

Feature store
online + offline

Prediction
service

Feature API

Create, experiment, &
deploy features

Computation engines

Training
service

Feature catalog

Data
scientists

Central repo

Local/Single Machine Remote/Distributed

Need an invisible interface to plug into compute ecosystems

Declare features with familiar APIs

@transformation
def average_transaction_amount_by_merchant(
 tx: Transactions,
 wspec: WindowSpec):

return tx.groupby(["cc_num", "merchant"])["amt"].window(wspec).mean()

17

Workload Compiler /
Optimizer

Deployment

Relational
Expression

@transformation
def transaction_count(tx: Transactions, wspec: WindowSpec):
 return tx[tx.status == "failed"].groupby("account_id").window(wspec).count()

Data Science Friendly: Python <> SQL

Workload
Compiler/Optimizer

Deployment

Relational
Expression

@transformation
def transaction_count(tx: Transactions, wspec: WindowSpec):
 return tx[tx.status == "failed"].groupby("account_id").window(wspec).count()

Same code can run on different computation engines

Compile into a relational expression (RE), which
is SQL equivalent

Intermediate
Representation

Compile & optimize RE into the computation
engine
(e.g., Panda, DuckDb, Flink, Spark) best suited for
the job

Spin up and manage computation jobs

Solution 1 : Relational
Expression based Compilation

● Unified yet familiar API
● Pluggable to many compute engines
● Minimize human error
● Prototype in minutes

Challenge 2: Streaming and
Batch Divided

● Evolving architecture
● Difficult to backfill
● Train-predict inconsistencies

Data Source

In-motion Compute

At-rest Compute

Online
Storage

Offline
Storage

 Online Query
(serving)

Mixed Query (backfill)

Offline Query
(training)

Lambda Architecture

Kappa (Streaming) Architecture

Data Source In-motion Compute
(Backfill from historical log)

Materialized
Views

 Online Query
(serving)

Offline Query
(training)

batch transformation

streaming transformation

Unified Architecture

Data Source
In-motion Compute

(intelligent backfill from dual
sources)

Materialized
Views

 Online Query
(serving)

Offline Query
(training)

batch transformation

streaming transformation

DWH backed
logs

Backing

Batch and streaming source unified to simplify backfill

Time

DWH

Stream

Dual source
cutover

Streaming Leaning Batch Leaning

Need an invisible interface to plug into storage ecosystems

Data Fabric for a Streaming Pipeline

Data Fabric for a Unified Backfill Pipeline

Training dataset backfill requires point-in-time correctness

Time

Feature data

Feature data

Feature data

Prediction
events

Feature data

Point-in-time joins to generate training data

29
Proprietary & Confidential

Given a spine (entity keys + timestamp + label), join features to generate training data

spine_df

train_df = pitc_join_features(
 spine_df,
 features=[
 "tx_max_1h",
 "user_unique_ip_30d",
],
)

inference_ts tid cc_num user_id is_fraud

21:30 0122 2 1 0

21:40 0298 4 1 0

21:55 7539 6 3 1

inference_ts tid cc_num user_id is_fraud tx_max_1h user_unique_ip_30d

21:30 0122 2 1 1 … …

21:40 0298 4 1 1 … …

21:55 7539 6 3 3 … …

ts cc_num tx_max_1h

9:20 2 …

10:24 2 …

20:00 4 …

cc_num_tx_max_1h

ts user_id unique_ip_30d

6:00 1 …

6:00 3 …

6:00 5 …

user_unique_id_30d

Solution 2: Abstract streaming
and batch data storage

● Unified streaming & batch source
● Unified online & offline feature stores
● Pluggable to most storage technologies

Challenge 3: It should just work!

● Cost, latency, correctness surprises!
● Lack optimizations knobs

Batch processing
(cheap and correct)

Cost Latency

Correctness

Stream processing without
consistency

(fast and cheap)

Stream processing with
consistency enforced

(fast and correct)

Workload Compilation

Optimization

Relational
Expression

@transformation
def transaction_count(tx: Transactions, wspec: WindowSpec):
 return tx[tx.status == "failed"].groupby("account_id").window(wspec).count()

Optimization

Various intelligent optimization can be done to
make appropriate tradeoff across storage and
compute systems.

Deployment

Customer managed in your own cloud

Guardrail for schema changes
Tunable workload optimization

Claypot Feature
SDK (Python)

Feature Catalog

Online
store

Offline
store

Feature
Serving

Filter Scan Scan

UnionJoin

Unified Processing

Filter

Solution 3: Optimization knobs

● Abstract optimization complexity
● User controls with high level knobs
● Trust, no surprises!

Make invisible interface
possible!

● Ubiquitous
● Easy and responsive
● Just works!

https://zhenzhongxu.com/
zhenzhong@claypot.ai

the invisible interface

