DB

The state of databases
in the current landscape

July, 2023

Michael Widenius

Creator of MySQL and MariaDB
CTO @ MariaDB

Overview

® The History of RDBMS and MariaDB
® Big Data is driven by Open Source
® Al and databases

® Databases and the cloud

® \What | have been working on lately

The history of RDBMS

Genealogy of Relational Database Management Systems

¥60,1586 CA(1994) Opesireres 20,1957 ¥R, 200¢

a0, 2006
i

V192910 Actian (renamed 2011)

Berkeley Ingres

BAY AREA PARK

We
Start
Here

BAY AREA PARK

System-R (IBM)

1BMIS1

1BM Peterlee
Relational Test Vehicle

®

Turbolmage (Esvel)

Turbolmage/XL (HP)

| Hasso
|| Plattner
Institut

1DM 500 (Britton Lee)

ASK Group (1990) ingres.
P i
| Ingres Corp. (2005) b VectorWise (Actiar)
Ingres v 15705t DABA (Rabotron, TU Dresden) g P O e
0 (O Monet Database System MonetdB (Cwl) | Netezza —
(Data Distilleries) ¥ = oM —
Postgres PDS‘;&:SQL ¥1,1995 v6,1997 72000 3—/ Actian Redshift (Amazon) e:i:,v.u
0 L L L Bizgres Greenplum PADB (ParAccel) Ly
Bt o Greenpum
e
Red Brick va.2005 EMC 40200 Pivotal
Empress Embedded lustra L i el
\\ ¥0,2000 IBM Informix 10, 2005 vi1l,2007 vIL70, 2010 vlz.10,2013 Fed Brick
() 'l P Il 'l I Il F
Ipha, 1979
e Informix 11029808 401990 vs0,1982 60,1994 b= S— Mictosaft 0L Server
F i i 3 V10,1555 18M Red Brick
NG Warehouse /
H-Store
Informix CStore Vertica F\nﬁl{ll‘c [oL:] Inforr
401980 viD.1993 VILS.1996 V119,198 O Voit DB
i i i i
Sybase SOL Server GipigeE — P O DATAllegro \ = 7
ran Sybase ASE
10,1587
Expressway 103 Sybase 10N, v11,1955 wzo s w2sao0t wzsia00n w0008 wica zui2 4
ok H 12,1999 5 A L X sAP X
)
oD RIVER Watcom SOL ppyyersoft Sybase SO Aﬁ_y\wnere\ ey ! = yd
Microsoft SQL Server @, -)
Microsoft Access UL1992 v2.1993 \ V31995 04,1997 51999 V02001 11,2003 12,2007 14,2010 /
— N i L i i i i i 1 Access
it B s Hicos viaiss e N vesses vz 1o va.2000 a.z005 102000 v 2uz2 V4 e
Oracle -~
SQL V81987 81999 V3, 2001 Vi0g,2003 ¥10gR2, 2005 vilg 2007 iigRz. 2008 Infobright Hlatd0s obiight
V1983 w1984 V51985 1,1988 C G :
V31,1997 3211998 V3232001 v4,2003 WAL 2004 52005 5112008 Oratle V5, 2013 yS7,2015
+2,1979 = i My?@% i i i i L L L i ' HLUl‘
- ' Sun MarisDB
/ Paradox {Ansa) o InnoDB (Innobase) T s —
DBC 1012 (Teradata) 1. 1983 / e S MariaDB vE5,2010 w0 z013 =
O— s \
Corel —l = Parsaon
v OracleQ jf \
Multics Relational Data Store ; i T
{Honeywell) RDB (DEC) I8 TimesTen Teradata V1313200 Ete Teradata Database
— Aster Database
ey o NCR V512004 V60,2005 V622006 122007 v1ip20ag e e
\ V611987 w81, 1008 V102, 2008 I \ 2
'l L '} e
= o 062 fo Senes
L) T
DBZ MVS 1053 w195 Cloudscape B2 UDE T iSeties Derby Apache Derby 5.2008
9
SQLM400 RELATIONAL CREEK DB2/400 45,1857 Informix i8M = \
) () a
/ e s LT x L \ ¥6,1990 DE;_Z\/OS v7,2001 8, 2004 ¥9.2007
O _ g iz o 2105
o oozarTE s N — e
L
vemsoL
L] L L L
1,1583 v2,1388 DB2UDB 31593 w4, 1584 / Ve 1959 v1,2001 48,2003 v, 2008 \ 18M /’IE”‘SQL O_
\ 1 i g L Soig 08
s N n
System/38 062 Transbase L S TinyD8 & Sxhsauin N J/ Exasouton
(Transaction Software) q '] Y > 4 e
REDABAS (Robotron) = = <ose
|
dBase I, 1961 dBase 1984 ey, 1968 Bortand Wi s % Fuebind
dBase (Ashton Tate) (Ol L 4 — T
Intrgse i | Firebka VL2003 152008 2 2008 wozo daseLLC
; Y F 1 1
Groton Database Systems (’ 9 N Ve -7 m
J L)
Cullnet wy.C L 1 18,2008 w2012
CODD RIVER
Allbase {HP) 7 sQLite
NDBM SQLite
C // C i PeopleSoft Tableal pyper
i SAP HyPer (TUM]
DBM Gamma (Univ, Wisconsin) 3 Mrloss (Berkaley) HSQLDB w1 52001 17,2002 iyPer (TUM) / =
VON/RDS. DDB4 (Nixdorf) ™ / e
(i Siemens g e one perive O MaxDB R
pds - L 'S) Trafodion
A Trafodion (O)
Nomston SQL
FileMaker Nonstop SQL N v3, 2011 ®
(Nashoba) (Tandem) 1,1387 2,208 AdabasD (Software AG) iy T e G N, PO
(u] i L . Neaview ——
r = Fiehaeer
VL1365 Claris (Apple) 1988 FileMaker Pro. v2,1992 v3,1885 va,1987 O +9.2007 10,2008 - =
A (i i A i 7 wass
FileMaker Inc.
Key to II nes and symbnls Felix Naumann, Jana Bauckmann, Claudia Exeler, |an-Peer Rudolph, Fablan Tschirschnitz
Contact - Hasso Plattner Institut, University of Potsdam, fellx naumann@hpl.de
v9.2006 Design - Alexander Sandt Grafik-Design, Hamburg
O DEMS name (Company) O Acquisition ol Versions —l Discontinued @ Branch (intellectual andfor code) Crossing lines have no special semantics Version 6.0 - October 2018
httpsifhy It

Digital Engineering - Universitét Potsdam

Here
Now

What made MySQL successful?

® When MySQL was started (1994) there were big players such as Microsoft, IBM,
Oracle, all having a significant portion of the market.
O Internet was new and everyone needed a web-optimized DB
@® However, the big players did not see the Internet as a viable business platform!
® MySQL was already proven stable before release (used for data warehousing and
web)
® We created a “Virtual company”, which made it easy to find good people
® New “free” license scheme (this was before Open Source)
O Free for most, a few have to pay
O Second program (ghostscript was first) to use dual licensing.
B MySQL was first to do it with GPL.
@® Very easy to install and use (15 minute rule)
@ Released source and tested binaries for most platforms
® MySQL was a needed, stable and easy to use product with the right price

What made MySQL successful?

® MySQL started from the bottom-up, providing a cheap (or free) solution for
the web industry.
O We were friendly and helpful towards community

® | personally wrote 30,000+ emails the first 5 years to help people using
MySQL
O MySQL then started growing in other industries (enterprise sector).
O MySQL followed an open source development model.

® "1 customer in 1000 actually pays" - Still enough to grow very fast.

@® The community provided testing, marketing and simple support needs.

® MySQL Ab provided full support for those that wanted/needed it.

® We (the MySQL founders) waited with investments until product was “good
enough”

Why MariaDB was created

“Save the People, Save the Product”

@® To keep the MySQL talent together

@ To ensure that a free version of MySQL always exists

@® To get one community developed and maintained branch

® Work with other MySQL forks/branches to share knowhow and code

@ After Oracle announced it wanting to buy Sun & MySQL this got to be even
more important.

How was MariaDB disruptive?

MariaDB follows in the same original footsteps of MySQL (which
Oracle has not done):

@® It is a true to Open Source project, following proper Free
Software / Open Source practices.

® Development happens in the open, working together with the
community.

e MariaDB Foundation was created to ensure that MariaDB
would always be Open Source.

® This process made MariaDB stand out.
O MariaDB has been integrated into most major Linux and

other free OS distributions as the default “MySQL” variant.

MariaDB Ecosystem

MariaDB Foundation
Works with the community

Builds and tests binaries
- Develops MariaDB buildbot

Drives adoption
- Works with OS to ensure MariaDB
IS included everywhere

Works with community developers
- Reviews architecture and patches
- Approves and pushes changes

Insures that MariaDB is always free.

Founded trough sponsorship's.

MariaDB Corporation
Works with customers

Provides paid support and subscriptions for
MariaDB (Enterprise and Community)

Employs most of the MariaDB developers
- Main driver of MariaDB development

MariaDB Enterprise
- Longer End-of-life
- Stable features are backported to earlier
versions to minimize needs for upgrades.

Provides NRE (paid development of new
MariaDB features).

MariaDB future plans

Monty’s view

« Work with customers to help them migrate from commercial
closed source database to MariaDB
« The MariaDB Oracle compatibility layer makes this easy

« Improve optimizer to handle very complex queries
o This is important when moving complex application to MariaDB
« MariaDB 11.0 has a new cost model that greatly improves

handling of complex queries.

« Work closer with SAS database providers to make MariaDB
work better in their environment
« MariaDB multi-tenancy feature is part of this collaboration.

Big data Is driven by
Open Source

Big data driven by Open Source

® MySQL / MariaDB
O SQL database with flexible replication, ColumnStore and Spider for scale out
@® Apache Cassandra
O Tunable consistency
O Keys map to multiple values, which are grouped into column families
O CQL language
® MongoDB
O Stores structured data as JSON like documents
@® CouchDB
O MVCC, ACID, eventually consistent
® Hbase (Hadoop + distributed file system)
O Writt)en in Java. Compression, in—-memory operation and Bloom filters (Is data part of
a set).
® HAWQ, Pivotal HDB
O Hadoop + SQL
@® Redis
O In memory database (+ snapshots to disk)
O Optional durability
@® Clickhouse A marice

(Y Anahtiral AAlLImMA Ariantad AAatalhAacAa

Why use NoSQL

@® Faster replication

@® Fast and easy key/value access

@® Data is often stored in memory

@® Note that with similar memory resources you can usually keep SQL data in memory too.
@® Can handle unstructured data

@® In traditional SQL, one can’t easily implement a web store

@® Most NoSQL vendors are considering adding SQL support.
. Like Atlas SQL for MongoDB (not open source)

Why NOT to use NoSQL

@® Lot of data duplication

« Relational database are designed to keep only one copy of a relation (like a customers
data)

® Can't (easily) join/combine data

@® No standardized language; Hard to move data and applications between systems

@® Complete lock in to one system

@® Normally few connections to computer languages or existing applications that need a
database.

@® Allows one to initially ignore solving the database layout problem as one can store data
‘as such’

® Initially easier to use, MUCH harder later

@® No sustainable scalable business models for most open source NoSQL solutions (as most
of them rely on the BSD or Apache licenses)

Problems to overcome with BlIG data

® Storage (not normally the big problem anymore)
O Memory (Very expensive)
O SSD (Expensive but slower)
O Hard disk (Inexpensive. Slow when doing random reads, fast on sequential reads.
The "tapes of tomorrow")

@® Access patterns
O Some access patterns are good for big data (scanning in parallel) while others are

hard
B Even simple joins can take days on petabyte tables

® Get it up when things fail
O Recovery; Can take days or weeks
O Get the caches warm (you need > 90 % hit rate with buffers!)

@® Replication and hot standby
O Must have, but makes big data more expensive

Definition of big data is changing

® When | worked with data warehousing (1986-1993) , big data was (all credit card
transactions for one Sweden’s oil companies):

® 1M users, 4M transactions / month (30 byte / transaction)
10 years of data = 1.3G

@® Handled by a Sun SparcStation, 25Mz, 32M memory. 2G hard disk

@® CPU's are now 700 times faster and have 10,000 times more memory.
SSD/Hard disk seek speed is 6000 times faster than in 1986

@® While machines have got faster, most data is still small (except for social and behavior
data) and can easily be handled by one machine.

Why big data solutions are hype

® Most companies will not have as much real data as Facebook, Twitter, Bilibili, TikTok,
etc. that needs to be accessed "at once"
@® Solutions that they have to use are not applicable for others.
O In the near future one can run what most companies think is big data on a few
machines:
O Memory now costs about 2100$/T; Most can afford 200G of RAM.
O SSD are now 50%/T (Read: 560-3100MB/sec 98K IOPS, Write: 520-2250MB/sec
write.
O You can get a 100Tb SSD from Nimbus and a 960Tb from Dell. 16T can easily get
bought.

@® MariaDB today can easily handle 0.5T of active data. It is only after 1T when one needs
to consider analytical databases.
@® There are very few users that need more than 0.5T of data.

@® The most common database size for big enterprises are 100G for their largest production
databases.
® 90% of queries processes less than 100 MB of data.
O See for details A marice

Al and Databases

Al and databases

@® Personally | don't see Al helping optimizing queries inside the database (data is changing
constantly and the optimizer is already using statistics and histograms to make
decisions).

@® Optimizer also has to be very fast and handle a lot of concurrency with a limited amount
of memory.

@® Al can be used to optimize SQL queries for applications.
@® Al can be used to translate natural language to SQL, which is useful for interactive
queries but too slow to be used in production for applications.

@® When it comes to programming, | would only trust Al to:
O Initially set things up for a common problem (write a script that does 'easy
explanation’')
O Try to find 'simple mistakes/bugs' in code like possible buffer overflows, missing
arguments, things that can easily simplified etc.
O Translating things from one language to another.
O Do a simple change that can be repeated in many parts of the code.
B Add a parameter of this type to this function and ensure that all callers are fixed.
B The resulting code has to be carefully reviewed! J“(AO”ODB

Al and databases

@® | would never even try to use Al for doing changes in a complex project, like adding
catalogs to MariaDB.
o There are no similar patterns in existing software that it could be trained on.
o Too many things in MariaDB are interconnecting in not obvious ways (if one does not
know the code)
@ If the Al would produce 'hard to understand code’, | could not use Al to explain why it did
things that way.
O All MariaDB developers | am working with are experts and can be put on solving very
complex problem in their domain. | don't see anyone being replaced by Al during their
or their children's lifetimes.

Databases and the Cloud

Database scaling for SaaS providers

@® SaaS providers want to optimize the number of customers they can host on
their hardware.
® \When offering managed services on MySQL/MariaDB, SaaS providers have
the following options:
O Create separate VMs for each customer.
B arge overhead - costly
M A typical “idle” MariaDB Server requires ~1GB of memory
B Best user experience
O Use shared instance
B Force user restrictions, only grant limited database access.
@® cPanel has this model, many other database management systems
share it
B Very limited overhead
B Poor user experience, artificial limitations enforced on users
B Affected by “noisy neighbour”, hard to track

Container / VM Approach Shared Server / Separate Schema

Physicd Machine \ [—Phlfsiqa[Machineg
{ Container [Container Container | '/MVSQ"— / MariaDB Doatabase Server %\\
or or or
Virtual Vir"tuo.t Virtual 4) (’ A ' N\
Modldne Mochine Mochine Schemo Schemo Schema
Customer 1 Customer 2 Customer 3
\ P A%
d N N
'//41?(55 Schewma Schewma MysQL
?L"?/{‘ Cus‘tow\ef o CuS‘tOM-&f‘ 5 schemao
Lz \} x4 A)
— A y
|
- - 1. . - -
- &R wikiwtin per VM > Customers have limted schemas
Ca\‘talogs
Ca‘talo::,-s
N Ca‘balog For o Sinﬁ,le_ Customer
Phl{s.ical Moching
T b
(Mc\ﬁaDB Datobase Server x(WEL'APP Wor‘otpr‘e;s.s Messaging
7, _k ” Schewma Schema Schema
™ i ™y =\
Ca'taxlos, Ca‘baloﬁ Ca‘tmlog
Customer 1 Customer 2 Customer 3 '
(. VA N J __Ai Historical Ana[!{tics ML{SQI'_
/ v h ™ Dota Schema| Schema schewa
Ca‘taloﬁ- Ca‘ta|o<3 Co\‘balog R L.
Customer 4 Customer 5 Customer 6 T && /
e = / J

New catalogs feature for MariaDB

@® Catalogs provide the best of both worlds.
O Shared instance
O A catalog looks like a normal MariaDB Server
O No user limitations
B Each user has full control over their catalog
B Root access on the catalog

@ Catalogs still have the problem of noisy neighbour
O However, statistics are now collected for each catalog
O So it’s trivial to detect the problematic catalog
O Move the problematic user to a bigger machine, increase costs

@® Catalogs can also enforce quotas
O Each catalog have their own configuration file with their own limits
O Force users to stick to certain performance limitations.
@® Sysadmins have control over all catalogs. _eriooe

Catalogs feature

@® Catalogs enable hyper—scaling for SaaS providers.
O For basic users, one can now host up—to 100x more users on the
same machines.

® In MariaDB, this feature is still under development
O If you would like to steer the roadmap for this, now is the time!
B Tooling
B Performance optimizations
B Specific functionality

Career path for programmers

What | have been working on lately

| am still actively coding!

® Improving the MariaDB optimizer to handle complex queries for big

databases

o This is based on input from MariaDB customers and users

o | spent almost one year on redoing and improving the cost model of
the MariaDB optimizer for MariaDB 11.0.

. This was what | was working on during my 10 days of Covid
quarantine during my last trip to Chinal!

o Initial test shows that most of the recent queries that has caused
problems with MariaDB 10.6 optimizer works very good in MariaDB
11.0!

® The last 6 months | have been working on the multi—-tenancy catalogs
for MariaDB.
OThis was based on input from several SAS provider at the last ZJMOHODB
CloudFest conferences.

Career path for programmers

@ | created MySQL and MariaDB. After the initial setups (where | handled everything), | have always
hired people to do management, customers and leading the company so that | can continue to
focus on architecture, development, and leading the MySQL/MariaDB developer teams.

@® A very common question | get in China is what is the best career path for a developer? Should |
become a manager or start doing something else?

@® Good coders are hard to find!
O It takes a long time for a coder to reach their peak (8-10) years of experience.
O Good programmers are valuable and can produce quality code for LONG time (>> 70 years)

® Don’t waste a good coder by “promoting” him to a manager.
O A good coder is not necessarily a good manager.
O Promote them by giving them more responsibility:
B Architecture — design bigger and more complex systems
B Help others to work on their code (but not manage!)

@® My advice to managers:
O Do not follow the "Peter Principle" to promote people until they reach their level of
incompetence! |
O The expected salary raise/year in China is not suitable for long term programmers (35-ye&t"o-"

riilal)

ﬂ MaricDB Thank you

