
从辅助到驱动：构建研发智
能体的实践与思考

演讲人：杜沛

目录

01

1

02

03

04

AI Coding在企业落地的挑战与思考

Coding Agent的多层记忆与能力增强设计

案例1：跨技术栈代码转换

案例2：Design to code 高UI还原度的技术突破

总结与展望05

01AI Coding在企业落地的挑战
与思考

开发者的 AI Coding核心诉求

1 2 3 4 5

代码续写 代码问答 助理模式 代码智能体 自适应全自主

AI驱动
• 通用大模型
• 单指令交互 AI引领人引领

• 复杂任务规划
• 工具执行
• 观察与修复

深度理解业务需求

希望AI能够基于项目历史需求

与问题经验,自动理解日志、

性能等隐性技术要求

AI代码输出一致性

不同开发者使用AI生成的代码

保持统一的风格和模式,确保

代码质量的一致性

UI高还原度与组件复用

AI精准理解设计稿，自动匹配

并复用企业级组件库，覆盖多

端场景

面临的挑战

复杂项目上下文工程

大型项目涉及多层架构、多种技术栈和复杂依赖关系,单一记

忆体系难以准确把握项目全貌。AI在处理跨模块需求时,容易

遗漏关键上下文,导致生成代码与实际架构脱节

工程质量保障

AI在代码质量自检环节缺少明确指引,容易遗漏性能优化、安

全防护、异常处理等关键检查项。自检不准确导致生成代码

直接用于生产环境的风险较大。

规范的结构化注入

团队规范散落在文档、wiki、历史代码中，隐性知识难以显性

化；难以整理成可理解的结构化形式。且规范本身也在持续

演进，同步更新成本高

多模态识别准度低

AI难以精准理解设计稿中的视觉细节(间距、圆角、阴影等)、

交互规则(响应式布局、动画效果)，生成的界面与预期存在偏

差,需要大量手动调整。

思考：让Agent变成'团队成员'

• 让Agent 知道"我是谁"

理解团队、项目和历史上下文，不再每

次都失忆

• 让Agent 知道"我会什么"

工具是手段，技能才是目的，是真正

具备处理特定领域的技能

• 让Agent 知道"怎么干"

沉淀最佳实践与执行路径，按团队方式

做事，而非从零试错

02Coding Agent的多层记忆与
能力增强设计

Agent 架构设计

• 多层记忆体系

构建个人记忆、组织记忆、项目经验多层记忆结构，让

Agent既懂"我"，也懂"团队"，更懂"项目"

• 领域技能内置

集成内部系统访问，技能指引、设计稿理解等专业技能

，让智能体具备特定领域的专业能力

• 认知规范审查

认知规范确保输出符合安全、合规和质量标准，约束智

能体异常输出行为

记忆模块设计

记忆来源于历史对话总结、经验灌输、文档资料、产品需求等多维输入

• 短期记忆：从对话上下文中动态提取和压缩关键信息

• 长期记忆：沉淀历史成功案例（项目级别），开发者组织全貌、项目细节、开发规范、公共组件等

项目级记忆结构

向量知识库
RAG

项目级记忆

Online Online

依赖关系

公共组件

组织规范

目录职责

软件架构

代码关系 BUG列表 API偏好

偏好设计模式 历史需求

项目规范

项

目

记

忆

知识图谱
Graph

个

人

记

忆

∙ 依赖的项目或库（包括版本号、包管理工具如npm、pip）

∙ 网络架构（如REST API、GraphQL、WebSocket、网关配置）

∙ UI布局习惯（如组件结构、网格系统、响应式设计方法）

∙ 样式的选择（如CSS框架、预处理器、主题变量）

∙ 设计模式（如MVVM、工厂模式、观察者模式在项目中的具体应用）

∙ 通信方式（如HTTP客户端、消息队列、RPC框架）

∙ 状态持久化方案（如数据库类型、ORM工具、缓存策略）

∙ 路由管理（如前端路由库、后端路由配置、权限控制）

∙ 标准样式指南（如代码格式化规则、命名约定、linting配置）

∙ 项目目录职责（如文件夹结构、模块划分、资产存放位置）

∙ 测试策略（如单元测试框架、集成测试方法、 mocking 工具）

∙ 安全实践（如认证机制、加密标准、漏洞防护）

∙ 项目配置细节（如构建工具、环境变量、配置文件路径）

∙ 项目的目录结构职责 (例如/src/utils存放工具类函数)

∙ 使用的软件架构（如微服务、单体、事件驱动、分层架构）

文档
Markdown

从代码到知识：实体-功能-依赖的结构化提取

Git
仓库

属性抽取

实体总结

关系抽取

实体抽取

上线
发布

知识提取 知识加工

功能总结

依赖总结

构建结构化代码知识图谱，让大模型能够快速精准地理解代码结构和依赖关系，支撑代码生成。

代码图谱构建

自然语言化代码分析

语法分析 类/方法

作用域

依赖分析

解析AST

调用关系

识别类、方法

识别属性、变量

图谱构建

实体提取

关系映射

节点（类/方法）

边(调用、依赖)

分析结果

类描述 方法描述

角色、用途 功能、用途

依赖描述

方法依赖
变量依赖

仓库地址
代码行数详情

源代码

代码位置

LLM

标签定义

模型标注
人工标注

结构分层

相关性的分类

图关联+
向量数据

格式化输出

记忆的持续学习

• 知识沉淀

规范记忆沉淀团队标准，定义"应该怎么做"；场景

记忆从任务执行中积累，提供"怎么做才对"的经验

参照

• 记忆检索

识别任务意图，按需召回对应记忆；动态组合场景

经验与规范约束

• 闭环进化

执行结果自动反哺记忆库：成功案例沉淀为场景记

忆，通用规律提炼为规范记忆，持续自我优化

“学会”正确做事

经验指引，精准执行：

• 消除产出不确定性：从“How to do?”升级为

具备主动判断力的 “I Know....”

• 规范内化为先验： 将复杂决策树简化为可预

测的、规范化的最短路径

• 指引式收敛：通过结构化的指引经验，Agent

跳过不必要的探索和验证环节

02案例1：跨技术栈代码转换

跨端代码转换

面临的挑战

• 平台特性差异

各平台生命周期、权限管理、导航模式等底层机制不同，无法直接平

移，需针对性适配

• API对应关系

不同平台依赖的三方组件、API差异等，如果没有清晰的对应关系，

模型不知道怎么转

• 框架适配

UI框架组件体系不兼容，功能相似但实现机制、属性配置、事件处理

方式都不同，只是一对一转换可能出现大量不适配问题

跨技术栈
转换

Android

iOS

Harmony
OS

基于Spec 的跨技术栈代码转换方案

将任务结构化为Rules/Templates/Workflow，LLM基于明确的规范执行转换，确保输出的准确性。

工程描述与组件映射

解析源工程技术栈（project.md），建立 iOS → Android 组件映射表(component.md)。

提案与架构设计

基于工程分析自动生成 proposal.md（迁移方案与约束）和 design.md（架构决策与技术选型）

任务拆解与执行计划

• 有序编排

任务按执行顺序排列，前置任务完成后才推进

后续任务

• 复用优先

优先完成组件层和通用能力，业务模块直接复用

• 粒度可控

每个任务明确输入输出，可独立执行、可单独验证

• 可追踪

任务状态清晰，便于进度跟踪、代码审查和质量验收

04案例2：Design to code 高
UI还原度的技术突破

Design to code 高还原度的关键要素

精确还原间距、字号、颜色等视

觉细节，确保像素级精准

准确生成并实现卡片中的交互信

息(如左右滑动、展开收起等)

像素级的还原度 UI组件复用

自动识别重复的UI 模块并抽离为

独立组件

已有组件库中的组件,优先复用而

非重复创建

布局适配能力

支持响应式布局，适配不同屏幕

尺寸与分辨率

生成结构清晰的弹性代码，满足

多端部署要求

01 02 03

Design to code 的工程化路径

核心概念: “切”

原子化拆分 组件复用 渐进式增强 边界清晰化四大原则

把复杂页面简单化，把简单问题做精准

1 2 3 4

准则 方法

结构化分析 组件拆分生成 页面拼装 验证纠错

D2C ：多模态分析+DSL 解析

拆分示例

自动拆分卡片

将页面拆分为多个卡片区域，用

户可再进行拖拽修正

自动识别组件

基于结构相似度(SSIM)查找到引

用的组件

卡片要求描述

可以描述组件中的特殊交互与隐

形要求

AI驱动的UI迭代优化

• 视觉差异自动检测，像素级精准对比

统一设计稿和运行截图数据，基于OpenCV(热

力图)+OCR，自动标注出颜色、字号、布局差

异等

• AI智能分析差异，自动生成修复方案

深度解析差异原因，输出针对性的代码优化建

议

• 迭代优化闭环，持续提升还原精度

自动迭代修复直至达标，确保生成代码与设计

稿高度一致

D2C 演示

05总结与展望

总结：理解AI能力边界，扬长补短

补齐短板

• 长token遗忘

上下文分段与记忆管理

• 视觉理解的局限性

复杂UI结构简化与拆解

• 业务理解缺失

业务DSL与知识图谱

发挥长板

• 强大的代码生成能力

专注AI擅长的代码编写

• 逻辑推理与决策

智能分析与架构设计

• 跨技术栈能力

快速适配多种技术场景

展望

从编写代码转向系统设计、架构決策

和质量把控

从编码者到架构设计者

开发者用需求描述替代代码编写， AI

理解意图并生成实现

自然语言成为编程接口

基于检测的问题自主分析原因、生成

修复方案和代码

自主修复形成闭环

从用户视角模拟真实操作，自动发现

交互异常与体验问题

自动缺陷检测

设计

AI Coding
的未来展望

修复

编码测试

Q&A

THANKS
探索 AI 应用边界
Explore the limitsof AI applications

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5: 开发者的 AI Coding核心诉求
	幻灯片 6: 面临的挑战
	幻灯片 7: 思考：让Agent变成'团队成员'
	幻灯片 8
	幻灯片 9: Agent架构设计
	幻灯片 10: 记忆模块设计
	幻灯片 11: 项目级记忆结构
	幻灯片 12: 从代码到知识：实体-功能-依赖的结构化提取
	幻灯片 13: 代码图谱构建
	幻灯片 14: 记忆的持续学习
	幻灯片 15: “学会”正确做事
	幻灯片 16
	幻灯片 17: 跨端代码转换
	幻灯片 18: 基于Spec的跨技术栈代码转换方案
	幻灯片 19: 工程描述与组件映射
	幻灯片 20: 提案与架构设计
	幻灯片 21: 任务拆解与执行计划
	幻灯片 22
	幻灯片 23: Design to code 高还原度的关键要素
	幻灯片 24: Design to code 的工程化路径
	幻灯片 25: D2C：多模态分析+DSL解析
	幻灯片 26: 拆分示例
	幻灯片 27: AI驱动的UI迭代优化
	幻灯片 28: D2C演示
	幻灯片 29
	幻灯片 30: 总结：理解AI能力边界，扬长补短
	幻灯片 31: 展望
	幻灯片 32
	幻灯片 33
	幻灯片 34

