
Al Scientist中的上下文动
态优化与自我演进

演讲人：王则远



目录

01

02

03

04

医学 AI Scientist 的机遇与研究缺口

核心框架实现

过程算法实现

实验、评估与挑战

挑战、展望与未来方向





01医学 AI Scientist 的机遇与研究缺口



医学“AI for Science”的崛起

2025年1月，美国医学院院士Eric J Topol在LANCET发文阐述通用型人工

智能系统的临床认证新路径，包括三步：

1、基础阶段：AI系统需展示对基础医学知识的理解，类似医学生完成基础

科学教育。

2、专科任务执行：AI需将知识应用于实际医疗任务，如病史收集、健康教

育和初步评估，同时接受严格的性能监控。

3、有条件自主与全面认证：随着能力展示，AI将逐步获得更大自主权，但

最终仍需人类监督，并定期审查其输出以确保持续遵守医疗标准。



医学“AI Scientist”的出现

人工智能（AI）越来越多地应用于科学学科， 用于

整合大量数据集，改进测量，指导实验，探索与数

据兼容的理论空间，并提供与科学工作流程集成的

可操作且可靠的模型，用于自主发现。

传统的科学方法为“观察-理论-假设-实验-数据-

分析-结论”，现今 AI 正越来越多地融入科学发现

中，以加速研究，帮助科学家生成假设，设计实

验，收集和解释大型数据集，并获得仅使用传统科

学方法可能无法获得的见解。



虽然 LLM 拥有广泛预训

练知识，但医学/生物医

药知识快速进化 、领域

专业、动态更新 ，共享

知识库难以覆盖全部。

知识局限性

传统 LLM 的推理/chain-

of-thought规划，在科研

任务中面临超长依赖链 、

高不确定性 、动态环境

时，容易出现规划失效

规划脆弱性

即便有工具调用 ，也存

在语义鸿沟 (semantic

gap)、参数误用 、副作

用风险 ，以及关键决策

节点上缺乏可信度估

计。

执行不可靠性

研究动机与挑战

三大挑战引出的核心问题：如何构建一个能够从自身经验中学习 (self-improve)、实

现能力持续进化 (self-evolve) 的专用智能体 (Specialized Agent)？



02核心框架实现



核心框架概述
基于动态上下文 (Dynamic Context) 的自主进化机制

与传统的一次性上下文 (如 RAG, ICE) 不同，它会随着任务进程持续演化

• 中心组件是 “行动手册 (Action Manual)” —— 一套元认知 (meta-cognitive) 策略集合 (不是静

态知识库 /记忆库)，用于指导智能体在不同情境下如何决策与行动。

• 通过 “模式探索 – 过程反思 (Pattern Exploration & Process Reflection, PE-PR)” 的双循环机

制，实现 闭环学习 (Closed-Loop Learning)：

• 模式探索 (Pattern Exploration)：在线 (on-line) 过程中识别高价值行动模式 (Action 

Patterns)，并尝试泛化。

• 过程反思 (Process Reflection)：任务结束后 (off-line) 对执行轨迹 (Execution Trace) 进

行因果归因 (causal attribution)，尤其针对失败或次优路径，生成修正策略 (remediation 

strategies)。

• 最终，PE-PR 输出被整合入 Action Manual，实现能力随时间、任务经验不断演化 (self-

evolve)。



理论基础

• 传统方法 (如 RAG, ICE) 属于“一次性上下文注入 (one-shot

context injection)”，适用于短期任务/较窄领域，但难以应对

科研任务中的时序依赖与情境变化。

• 科研任务 (尤其医学 /生物医药) 通常是高度专业化 + 长周期 +

多步骤 + 高不确定性，要求智能体 能够在任务执行过程中不

断适应、调整、学习 (in-task learning/online learning)。

• 因此，需要一种动态上下文机制 (Dynamic Context

Mechanism)，允许上下文随着任务进程实时更新，并对智能体

决策产生持续影响。

• 这种设计可以有效提高智能体对复杂、长周期任务的适应性和

泛化能力。



为什么传统 RAG / Memory 在医学科研任务中失效？
1）医学科研任务的真实特征

• 长周期、多阶段任务链：医学科研往往涉及假设提出 → 实验设计 → 数

据收集 → 模型调整 → 验证修正等多个阶段，各阶段相互影响，任务跨

度往往是数小时到数天甚至更长。

• 高失败率本身就是信息：在科研里，失败不是异常，是决策有效性的重

要反馈信号，能提供因果归因线索。

• 任务动态性强：中间结果会不断改变策略方向，相比短任务，执行状态

在任务间持续变化。

2）传统 RAG / Memory 的三个根本局限

• 只存“知识”，不存“决策路径”：RAG 和静态记忆只注入事实或文献，不

记录“为什么这么做”。

• 失败经验不可复用：系统不会积累“失败是怎么来的、以后如何避免”，

导致每次见到类似问题都要重新推理。

• 无法区分“策略错 versus 数据噪声”：单纯的知识检索无法回答是策略

决策导致失败还是数据本身噪声干扰。



“行动手册 (Action Manual)” 的定义与组成

定义：一个结构化、动态演化的策略知识库 (meta-knowledge repository)，编码“如何成功执行任务”的元知

识 (meta-knowledge)，包括但不限于：工具调用序列、问题分解策略、失败归因模式、验证启发式规则等。

• “行动手册”特点：

• 动态演化：随经验 & 任务积累不断更新，而不

是静态知识。

• 可检索/可解释：不仅仅是黑箱记忆，而是结构

化规则/策略集合，以便审查、调试与理解。

• 情境感知 (Context-aware)：策略能够根据当前

任务状态、历史经验、环境反馈做出调整。

• “行动手册”并非传统意义上的数据库/记忆库，而是智

能体决策时参考的元认知上下文 (meta-cognitive

context)。



Action Manual 的工程化分层表示

Action Manual 三层结构

L1：策略规则层（Symbolic）- 可解释性

- if-then 规则 / 检查表 / 经验启发

L2：模式向量层（Embedding）- 泛化能力

- 任务间相似性检索 / 索引

L3：策略元信息层（Meta）- 可信度评估

- 置信度、适用边界、失败率



Action Manual 案例
1) 任务背景

• 目标：在大规模文献 + 实验数据中识别潜在候选靶点

• 主要难点：关联模式复杂、噪声干扰高、验证成本高

2) 失败现象

• 多轮自动推断过程中高置信度候选靶点反复被实验否定

• 原因难定位：是模型能力问题还是样本偏置？

3) Reflector 的归因结论

问题不在基础模型，而在“证据选择策略”：偏好高频共现文

献，忽略弱信号，导致误判与错误决策路径

4) 写入 Action Manual 的新策略

“当证据来源高度集中在少数几个数据源时，必须触发偏倚

检测流程。”

5) 更新后的效果

相似任务上错误率显著下降；工具调用成功率提升

再遇类似偏倚情境能自动触发策略调整



PE -PR 双循环引擎机制（模式探索）

• 在 线 机 制 (on-line)： 当 智 能 体 执 行 任 务 (planning +

execution + tool use) 时，系统监控执行过程、工具调用日

志、环境反馈、中间结果等。

• 通过算法 (例如pattern recognition、sequence mining、

clustering等) 自动识别其中反复出现、表现良好的 “高价值

行动模式 (action patterns)”。

• 将这些模式提炼、泛化，形成 candidate 策略 (action-

pattern templates)，可能包括 “某类任务 — 推荐工具组合

+ 调用顺序 + 参数选择 + 验证方式”。

• 这些 candidates 会被暂存到 “行动手册 (Action Manual)”

中 (或者待审批 /筛选) — 为未来任务提供参考。



PE -PR 双循环引擎机制（过程反思）

• 离线机制 (off-line)：当任务 (或一批任务) 

完成后，对整个执行轨迹、中间结果、成功

/失败 / 次优路径进行因果归因，尤其针对

失败或表现不佳的路径。

• 反思目标包括：识别失败原因、发现误用 /

滥用工具, 识别决策盲点, 以及策略中遗漏的

验证 /校验步骤。

• 根据反思结果，生成可操作的修正策略，例

如：更好的工具调用顺序、更严格的验证机

制、备用方案、失败监控 /告警机制等。

• 将这些修正策略整合回 “行动手册 (Action 

Manual)” 中，优化现有策略集合。



闭环学习的意义
• 持续自我改进：随着任务数量和多样性增多，

智能体不断积累经验，将成功/失败的教训转化

为策略，提升未来表现。

• 增强泛化能力：Action Manual 中积累的模式 /

策略，并不局限于单个任务，可跨任务、跨子

领域 (subdomains) 复用/适配。

• 降低对人为干预 (Human in the Loop) 的依

赖：初期可能需要人工审查 candidate 策略；

但长期目标是使系统能自动选择/验证 /优化策

略。

• 提高可靠性&可解释性：与黑箱模型不同，“行

动手册 + 策略集合” 是结构化和可审查的，为

高风险领域 (如医学) 的信任、安全、合规提供

基础。



03关键过程算法实现



系统架构总体设计 — 四层智能体模型

• 元控制器 (Meta-Controller) — 负责高层决策、策

略选择 (调用何种子策略/action pattern)、背景

context 管理 (包括 Action Manual 的检索/更新)。

• 规划器 (Planner) — 基于任务描述 + 当前上下文生

成宏观任务图 (Task Graph)，并负责分解成子任务/

步骤。

• 执行器 (Executor) — 执行器负责具体工具调用/操

作 (tool invocation/manipulation), 包括与外部工

具、数据库、模拟器、实验平台 (in silico 或自动化

实验室) 的交互。

• 反思器 (Reflector) — 负责根据执行结果、执行轨迹

(execution trace) 与反馈 (environmental/ outcome

feedback) 启动反思机制，并将学到的新策略注入

Action Manual。



Planner 模块 — 分层规划 + 自适应重规划

• 分层规划 (Hierarchical Planning)：Planner 利用

Action Manual 里的策略 + 当前上下文 (动态) 将高

层任务 (如 “发现疾病候选靶点”) 分解为若干子任务

(文献调研 → 假设生成 → 实验设计 → 数据分析 →

假设验证)。

• 融合Task Graph + 子任务/步骤，清晰表示任务依

赖 、 资 源 / 工 具 使 用 、 任 务 顺 序 、 条 件 / 分 支

(branching) 等信息。

• 自适应重规划 (Adaptive Re-planning)：在执行过程

中 (或执行失败 / 中断 /环境变化时)，当环境反馈或

中间结果偏离预期时 (例如工具失败、数据不符合预

期、假设被否定等)，Planner 根据最新上下文 (包括

反馈 + 报告) + Action Manual 的建议，重新规划后

续步骤 /路径。



Planner 的第一个大坑：静态 Task Graph
有效的 Planner 不只是生成任务拆解，还要设计“可修正控制机制”。

1）初版设计

• 使用树状 / 有向无环图（DAG）表示任务分解

• 假设分解后的路径是稳定的

2）实际问题

• 中间结果可信度不确定：中间预测 / 推断往往不可靠，可能导致整
条路径不稳

• 一步错 → 后续全错：如果 early decision 是错的，会导致“所有后
续执行”的无效

3）改进方案

• 可回滚子图（rollbackable subgraph）：相当于“容错路径”，允许
在上下文变化后回滚到合适节点

• 规划不再追求最优，而是“易修正”：保证路径即使偏离也易于修正

4）重规划触发条件示例

• 任何工具失败

• 中间结果偏离预期阈值（confidence threshold）

• 发现新的高价值策略模板



Executor 模块 — Tool Grounding 与策略驱动工具选择

• Tool Grounding：不仅仅是简单 API 调用，而是让

智能体理解工具的先决条件 (preconditions)、副作

用 (side-effects) 、 参 数 语 义 (parameter

semantics) —— 相当于让 LLM “理解工具真实行

为与限制”。

• 策略驱动 (Policy-driven) 工具选择：使用 Action

Manual 中记录的策略 /工具组合 + 调用顺序 + 参

数 选 择 。 可 以 结 合 贝 叶 斯 优 化 (Bayesian

Optimization) 、 强 化 学 习 (Reinforcement

Learning) 或 heuristic selection，替代传统启发式

(heuristic) /随机 (random) 选择。

• 这种设计可以减少因工具误用或误调用引起的大规

模失败/不可重复性 (non-reproducibility)，并提高

工具调用效率 &可靠性。



Executor 的真实挑战：Tool Grounding ≠ API 调用

1) 三种工具失败形态

• 参数合法但语义错误：结果看似成
功，但语义上与任务目标不符

• 工具成功但结果不可复现：一次成功
≠ 始终有效

• 工具成功但违背领域常识

2) Executor 的应对策略

• 工具先决条件检查：执行前验证参数
逻辑有效性

• 结果一致性验证：多次交叉验证输出
与预期是否一致

• 失败类型自动标注：不同失败路径用
不同标签指导后续处理

3) Action Manual 如何减少工具滥用

• 指导何时调用工具、如何调用，并防
止过度调用



Reflector 模块 — 知识蒸馏与泛化

• 从日志到洞察 (logs → insights)：Reflector 将低阶

的执行日志 (low-level logs / trace + tool calls +

environment feedback + results) 输入到大模型 /分

析模块，由其抽象为高阶策略规则 (high-level

strategic rules)。

• 知识表示与存储：探讨将这些策略规则以符号化

(symbolic) 或向量化 (embedding / vector) 形式存

储，以平衡可解释性 (interpretability)、泛化能力

(generalization) 与 检索 / 执行 效率 (retrieval /

runtime efficiency)。

• 这样可以让智能体不仅“记住”以前做过什么，还“理

解”为何这样做 (why / when / how)，并在新任务 /

环境下泛化 (generalize) 使用。



Reflector 的第一个问题：反思一开始是“不可信的”
1）过度归因（Over -attribution）

• 现象：Reflector 倾向于把一次失败归因为某一个“看

似合理”的单一因素；实际上失败往往来自 多因素耦

合（策略 × 数据 × 工具 × 时序）

• 典型误判模式：将随机噪声当作因果因素；将结果相

关性误判为因果关系

• 本质原因：单次任务轨迹（single trajectory）样本量

极小；缺乏跨任务对照，无法进行稳健因果推断

在这一阶段，“反思”更像是假设生成器，而不是可靠的因

果解释器

2）编造“合理原因”（Hallucinated Rationalization）

• 现象：反思输出在语言上高度自洽、逻辑通顺；但与

真实失败原因不一致

• 常见来源：LLM 的 post-hoc rationalization 倾向；

在信息不充分时“补全因果链”

• 风险：错误策略一旦写入 Action Manual，会被反复

调用；形成“系统性偏差放大”



04实验、评估与挑战



评估与实验设计 — 如何衡量与验证

• 评估范式 (Evaluation Paradigm)：不仅关注最终

结果，还强调过程导向 (process-oriented) 的指

标 (metrics)，包括：

• 规划修正率

• 无效/冗余操作率

• 反思 (reflection) 有效性：即反思后策略是

否能改善后续任务表现

• 工具调用/资源利用效率

• 对比实验 (A/B Test)：对比传统静态上下文系统

(baseline) 和引入 PE-PR + Action Manual 的系

统，观察两者在上述指标上的差异。

• 长期考察 (Long-term evaluation)：通过多轮任

务、多样任务 (不同疾病 /研究方向 /数据类型)，

考察智能体是否真正“自我进化 (self-improve)” /

能力泛化。



Before / After PE-PR （1w+ Test Cases ）

对比系统定义

Baseline：静态上下文 + RAG / 长记忆

PE -PR 系统：动态上下文 + Action Manual + 自
适应反思循环

关键对比指标

指标 Baseline PE -PR System

成功路径率 22% 71%

失败率 78% 29%

平均步骤长度 12 9

工具调用错误率 0.42 0.18

人工介入次数 8 2



当前挑战与潜在风险

1

系统需要不断学习新策略 (plasticity)，但

又不能轻易遗忘 /破坏之前已验证的旧策

略 (stability)，如何平衡二者是关键挑战。
稳定性–可塑性困境

2

反思 (Reflection)模块 + 模式挖掘

(Pattern Exploration)会带来额外计算开

销/延迟 (latency)，可能影响响应速度/实

时性。

计算开销 vs 性能

3

在高风险 /高不确定性领域 (如医学)，完

全自动化可能不安全。如何设计可信、有

效的人工机制 (human -in-the-loop) 是

必须解决的问题。

人机协同的设计问题

4

不同任务可能依赖不同类型的数据

(omics, clinical,literature)、工具

(模拟器、数据库、实验平台)，如何

统一 &兼容仍是挑战。

数据 /工具异构性



05挑战、展望与未来方向



评估与实验设计 — 如何衡量与验证
• 多智能体协同进化 (Multi-Agent Co-evolution)：

构建共享Action Manual 的AI Scientist 群体，不

同 agent 擅长不同子任务 (文献调研、实验设计、

数据分析、策略反思等)，实现分布式知识/策略共

享，加速collective learning。

• 迈向零样本自主发现 (Zero-Shot Autonomous

Discovery)：当 Action Manual 达到足够复杂性和

完备性后，有可能实现智能体在无 (或极少) 人类

干预 /领域知识输入下，自主生成全新、有价值的

科学假设，并推动实验 /模拟验证。

• 混 合 人 机 协 作 (Hybrid Human-AI Research

Teams)：设计人工干预 /审查机制 、人机知识协

同，在保证可靠性、合规性、安全性的前提下发挥

最大效率。

• 可解释性、合规性与伦理框架：特别是在医学 /药

物领域，需要考虑可追踪性 (traceability)、策略/

决策透明性 (transparency)、数据 /隐私 /伦理合

规 (compliance, privacy, ethics) 等。





THANKS
探索 AI 应用边界
Explore the limitsof AI applications


	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5: 医学“AI for Science”的崛起
	幻灯片 6: 医学“AI Scientist”的出现
	幻灯片 7: 研究动机与挑战
	幻灯片 8
	幻灯片 9: 核心框架概述
	幻灯片 10: 理论基础
	幻灯片 11: 为什么传统 RAG / Memory 在医学科研任务中失效？
	幻灯片 12: “行动手册 (Action Manual)” 的定义与组成
	幻灯片 13: Action Manual 的工程化分层表示
	幻灯片 14: Action Manual 案例
	幻灯片 15: PE-PR 双循环引擎机制（模式探索）
	幻灯片 16: PE-PR 双循环引擎机制（过程反思）
	幻灯片 17: 闭环学习的意义
	幻灯片 18
	幻灯片 19: 系统架构总体设计 — 四层智能体模型
	幻灯片 20: Planner 模块 — 分层规划 + 自适应重规划
	幻灯片 21: Planner 的第一个大坑：静态 Task Graph
	幻灯片 22: Executor 模块 — Tool Grounding与策略驱动工具选择
	幻灯片 23: Executor 的真实挑战：Tool Grounding ≠ API 调用
	幻灯片 24: Reflector 模块 — 知识蒸馏与泛化
	幻灯片 25: Reflector 的第一个问题：反思一开始是“不可信的”
	幻灯片 26
	幻灯片 27: 评估与实验设计 — 如何衡量与验证
	幻灯片 28: Before / After PE-PR（1w+ Test Cases）
	幻灯片 29: 当前挑战与潜在风险
	幻灯片 30
	幻灯片 31: 评估与实验设计 — 如何衡量与验证
	幻灯片 32
	幻灯片 33

