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01端侧化算法技术概览



模型端侧落地的困难

珍贵的内存

终端设备内存有限，算法效果需要一定程度上向模型
体积和推理精度妥协，因此如何设计和优化端侧模型
压缩算法，利用有限的内存占用获得最佳的算法效
果，为用户提供流畅、好用的端侧AI功能，是端侧化
算法持续追求的目标之一。

有限的电量

为用户提供端侧AI能力的同时，也不能成为“电老
虎”，不能制造续航焦虑，持续的下探端侧AI的能耗水
平，需要端侧算法、工程和芯片团队的共同努力。

较高的OTA成本

端侧模型体积大，不能高频OTA更新，同时缺乏运
营日志，难以敏捷迭代修复问题。因此端侧业务的
交付，需要在算法质量，稳定性，性能功耗热等多
个维度进行严格的测试。

强耦合的业务

为了减少对用户手机ROM空间的占用，所有端侧算法
能力共用同一个基模型，因此基模型迭代需要和众多
业务需要保持相同的节奏，这对工程进度管理，算法
的迭代和测试验收都是很大的考验。



模型端侧化算法技术概览



02模型稀疏化压缩



模型稀疏化



结构化稀疏-L0正则化方法

为每个参数学习一个可微分的「门控值」(0~1)，训练中自动识别重要参数（门控→1）和冗余参数（门控→0），实现端到端的稀疏化学习

核心思想



结构化稀疏-L0正则化方法

收敛速度慢，对数据规模要求
比较高，mask 的优化速度和
模型权重的优化速度不好均衡

均匀分布的噪声均值太高，噪
声波动影响的参数量较大（类
似dropout），无法适用于剪
枝比例比较大的情况(例如
90% 以上)

为了达成剪枝目标，会产生较
多0-1之间的mask ，剩余参数
存在浪费，影响剪枝后模型的
效果

如何让lm_loss通过
mask 对权重的评估
更快、更准确

Mask 的噪声分布设
计和实现

概率累积分布函数的
设计和实现

缺点 优化方向 核心优化思路

把L0正则化剪枝直接通
过梯度下降获得0-1二值
mask 转换为两阶段问
题：

• 排序：通过梯度下降
评估参数重要程度，
体现在mask 数值的
排序上

• 剪枝：通过soft 
top-k mask 将排序
结果渐进的转化为
0-1二值序列

具体改进措施

加入梯度缩放因子，将mask 从0-1映射到更小的范
围，e.g. (0,1e-3]，并通过伪输入技巧将mask 引入
到lm_loss的优化过程中，让mask 对模型效果感知
更强，提升优化效率。

使用加入直通估计的hardtanh，更加充分的利用
mask 的梯度信息。

重写噪声采样逻辑，转变噪声分布，并限制噪声的
绝对值的上限，仅用于评估重要性，不致力于产生
二值mask 。

整合了Hard Concrete Distribution和soft-topk-
mask 的思路，设计了一些列辅助函数，保证剪枝目
标达成并且不浪费参数。

排序和剪枝两个阶段在训练过程中动态交替进行，实现了较为平缓的剪枝过程。



结构化稀疏-落地实践
基于OPPO 的L0改进算法，从Qwen2 -7B剪枝到4B ，超过了Qwen1.5 -4B 的效果。

L0正则化剪枝在Qwen7B->4B的结果

在ColorOS 15.0的端侧基模型剪枝和解码加速的draft model上都有应用。支撑OPPO 智慧语音端侧化业务。



非结构化稀疏（内存压缩）
权重稀疏化过程

稀疏化训练过程

稀疏化训练策略



非结构化稀疏-算法效果
在AndesVL -4B 模型分别进行了 50% 、65% 、70% 和 75% 四个稀疏度的模型训练，并在image caption和多模态信息抽取任务上进行
效果验证：
1. 50% 稀疏度模型在两项测试任务中表现优异，其综合性能指标与原始稠密模型基本持平，甚至展现出轻微的性能优势，表明适度的稀
疏化可能带来正则化效应。
2. 随着稀疏度提升至 65% -75% ，模型性能呈现可控范围内的温和下降，性能衰减曲线显示：稀疏度每增加 15% ，性能损失约 2-3 个百
分点，即使在 75% 的较高稀疏度下，模型仍保持核心能力，各项关键指标的下滑幅度均小于 5% ，为模型部署提供了显著的效率提升空
间。



非结构化稀疏-性能收益
在MediaTek天玑9500芯片上，结合硬件压缩能力，实现速度和内存的大幅度优化。

结论：75% 稀疏度下，解码速度提升 44.7%，BPV 降低 33.6%，有效实现模型压缩与推理加速的双重优化。
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端侧基模型量化感知训练
OPPO 自研量化感知训练框架，支持以下feature

1. 高度灵活的点位设置和quantizer模式
可以快速适配新模型，支持权重、激活的per tensor/channel/token/group的asym /sym 的fakequantizer设置以及动态、静态的QAT 训练模
式。

2. 动态精度分配策略
可细粒度识别高敏感权重和激活点位，实现自动化的混合精度QAT 。

3. 端到端静态量化
与工程团队、片商紧密合作，通过点位对齐和静态QAT 训练，可以将QAT 得到的量化编码直接导入到端侧模型中，绕过PTQ 过程，减少算法迭
代过程中的效果不确定性，通过这种方式可以支持低bit量化的高效部署（W2 ，A8 等）。

通过QAT 训练，可以将模型端侧和浮点的输出一致性(Top1-Accuracy)保持在0.95以上。



垂域场景落地-QALFT 训练框架
纯浮点模型落地过程中的问题：

◼ PTQ 损失不可控：浮点lora优化完成之后，各个业务一起做量化时对彼此的影响不可控制。

◼ 业务间耦合过重：每次LoRA 更新时，必须对基础模型及所有LoRA 进行重新量化，产生显著时间成本。

◼ 测试资源投入较大：从浮点模型到端侧落地需经历多环节协同。但是如下图所示，一旦效果不达预期，需要重新迭代整个流程。



QALFT 训练框架
为解决上述问题，我们开发了量化感知LoRA 微调框架（QALFT ）。用户能够使用该工具直接在量化后的模型上进行微调，无需关注

模型量化的具体技术细节。这一方式将模型训练与部署流程简化为两个核心步骤：

1. 针对业务场景，基于量化模型进行微调。

2. 评估量化模型在业务场景的实际效果。



QALFT 训练框架
◼ 模块解耦架构： 模型、数据、训练器三方解

耦，各组件可在不同训练流程中复用。

◼ 丰富的训练范式： 适配SFT / 蒸馏等多种训

练范式。

◼ 扩展灵活性： 支持新模型、数据格式、训练

方法的可插拔接入。

◼ 底层平台隔离：MTK/Qualcomm 平台库与数

据、训练器等上层设施隔离。

◼ 零代码化部署： 无需额外代码开发，支持微

调、验证全流程操作。



QALFT 训练框架
使用QALFT 具有以下优点：

◼ 降低人力成本，缩短部署周期： 显著减少了传统方案中LoRA 相互不独立以及两次效果迭代所需的人力与时间投入。

◼ 更适配1+N LoRA 模式： 流程与“1+N LoRA”模式更加匹配，即量化的基模型保持通用性和业务无关性，并通过LoRA 的方

式对业务场景进行适配。

◼ 更好的算法精度：片商提供和端侧推理一致的模型量化推理库，实测算法效果显著优于PTQ 方案（端侧效果相比浮点微调

损失能控制在3% 以内。）

平均效果损失：QAT+PTQ: -3.93% vs QALFT: -1.43%
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KV -Cache 压缩&KV -Cache 压缩感知训练
端侧长上下文存在的挑战

内存：随着输入长度增加，KV 缓存呈线性膨胀，内存占用迅速提升。

计算：由于端侧算力有限，长文本下softmax 等计算量急剧膨胀、推理延迟显著增加，制约了长上下文能力的广泛应用。

自研training-free压缩方案&压缩感知训练方案在通话摘要场景的对比

压缩感知训练方案能显著降低cache-eviction算法损失。



解码加速（ speculative decoding）

解码加速的核心优化问题：
1. 提升草稿的接受率和接受长度。
2. 降低草稿模型的执行成本。

3次推理
接受1+3+3=7个token。



解码加速
采样树(topk & total tokens)：

1. topk
- 每次调用小模型时，都只选出topk个词往后扩展，
避免层数过大爆炸。
- 草稿模型的ARN ≥ topk

2. total_tokens
- 用于最后排序出得分最高的total_tokens个路径进行
一次并行验证。
- 目标模型的ARN ≥ total_tokens



解码加速
训练流程

推理优化

路径选择、路径扩展策略优化；早停机制。

业务效果

多模态理解场景：
• AndesVL2-4B(aimv2+qwen3-4B):通过算法和工程侧的联合优化，得到6.7x的端到端加速效果（23.3 t/s  ->   157 t/s）
• AndesVL-4B(internvit+qwen2.5-3B)，峰值速度达到240+tok/s
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业务落地
智慧语音端侧化

• OS14.0 行业首个端侧7B大模型落地

• OS15.0 自研剪枝蒸馏算法，升级1+N lora架构，支持通话、
三方应用、视频摘要和实体组合。

• OS16.0 升级端侧多模态大模型基座，实现更多场景基模型复
用，极致的模型压缩和解码加速，大幅度降低模型运行内存
功耗。

AI搜索、记忆仓（多模态能力）

• 提供端侧相册caption能力，支撑AI搜索业务。
• 提供端侧相册卡证信息抽取能力，支撑记忆仓-自动填充业务。



技术预研

128K超长上下文

融合芯片级上下文加速技术

赋能法律、医疗、
教育等专业场景分析

20万字级文档
（如 300 页书籍）

端侧支持处理

（Prompt 压缩技术和 kv cache eviction技术）

突破端侧能力边界

可本地处理

端侧超长上下文支持



技术预研

240t/s

极致模型内存压缩技术结合先进解码加速技术，
通用场景峰值推理速度达

高效办公快人一步

端侧极速生文



技术预研

4s完成多次4B模型推理

AI一键闪记端侧版，全场景啥都能记

响应速度不输云侧，无网也能随心记

端侧高效多模态信息处理

端侧一键闪记
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总结与展望

端云协同的agent应用

隐私和个性化

可能用在哪里

面向NPU的高性能架构

技术上还需要优化什么

新硬件、具身智能

开放的端侧算力算法服务

模型量化压缩、推理加速

OS层面的资源调度、模型更新

成熟稳定的开发工具链





THANKS
探索 AI 应用边界
Explore the limitsof AI applications
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