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LLaVA-UHD: an LMM Perceiving Any Aspect Ratio
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Figure 1: LLaVA network architecture. Qwen2.5 VL: 1536 tokens
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/| @ Nelson Sergerie  in my family for over 30

GASPE - 36 additional
hectares (86 acres) have
added to the protected
logical corridor we o~ vidual, but considering the
rillon Park, north, Of the Nature Conservancy of
Sa 1M¢Junque/&c|cn in  Canada's proposal to pre-
Gaspé. / serve it so that future genera-

These foufacquisitions of ~ tions could also benefit from
private 1pd by the Nature it, I saw only benefits. I now
Consegrancy of Canada ata have all the peace of mind |

st f $284,000 bring the could possibly want,” Ex-
ppficcted area  to 207  plains Jérémie Gagné, owner

/hectarcs of one of the four lands ac-
A This area is under pres- quired by CNC.
/ sure by housing construction Bear, moose, lynx and

and Route 197. The territory martens can be found in this |
is essentially forested, and area. The Canada lynx, for
home to, among others, example, must have access to
groves of balsam fir, white an area of at least 70 square
and balsam poplar, kilometres in order to ensure
tic of the region.  its survival, which it cannot
The purchase connects the  find only within the limits of
park to the east and public Forillon Park, so it must be
lands to the west. able to move towards
t forested environments further
‘hiat theredis a suitable ] west.
environment -on’ the
other side of the raad.‘When
animals, cross; it can-be a
‘e are in 1
Aithi the Department of

Photo 1: This map illustrates
Transport. Perhaps.it would| |%¢ "”“;f’g‘_‘l';” ”"’Zd"’ bb,‘f‘.
0d to announcé the'lo- | |ween Forillon and public

o Certain ecologicar| LiaBds

; the
¥ A Photo 2: Part of the ecologi-|
project. managets . CAMNE] \oal corridor linking Forillon)

\and public lands.

“I had decided to sell my
land, an estate that had been

Photos: Courtesy

Ml Protected by CNC
[ Private land
I Urban perimeter

More protected land near Forillon\n
Nelson Sergerie\n GASPE -36
additional hectares (86 acres) have
been added tothe ...... 'What is
important is to ensure that thereisa
suitable natural environment on the
other side of the road. When animals
cross, it can be a risk. We are in
communication with the Department
of Transport. Perhaps it would be
good to announce the location of
certain ecological corridors,"
comments the project manager,
Camille Bolduc. ...... Bear, moose,
lynx and martens can be found in this
area. The Canada lynx, for example,
must have access to an area of at
least 70 square kilometres in order to
ensure its survival, which it cannot
find only within the limits of Forillon
Park, so it must be able to move
towards forested environments

Turther west. \n Photo 1: This map
illustrates the ecological corridor
between Forillon and public lands.\n
Photo 2: Part of the ecological
corridor linking Forillon and public

lands. \n Photos: Courtesy
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Qwen2.5-VL-Instruct (7B) Qwen2.5-VL-Instruct (72B) nternVL3 (8B) MiniCPM-V-4.5 (8B
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‘ H || ' l ” | ' LVBench LongVideoBench (val) MLVU (M-Avg)

Qwen2.5-VL-Instruct (72B) 47.3 60.7 74.6

B A iy InternVL3 (8B) 441 58.8 71.4
ﬂ?:l:b;kb (=] ;EIE I%%}g =« ﬁﬁﬁUﬂ\”E%
MiniCPM-V 4.5 (8B) . 50.4 . 63.9 . 751

. Qwen2.5-VL-Instruct (7B) 453 56.0 70.2
| 111 [
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Avg Score Total Infer TimeCost (h)

GLM-4.1V-Thinking (9B) 76.6 175

MiMo-VL-RL (7B) 76.4 1.0

MiniCPM-V 4.5 (8B) - 77.2 . 7.5

Video-MME H#EIRFF 8

Avg Score Total Inference Time (h) GPU Mem (G)

Qwen2.5-VL-Instruct (7B) 716 3.0 60.0

GLM-4.1V-Thinking (9B) 73.6 26 320

MiniCPM-V 4.5 (8B) - 735 l 0.3 l 28.0
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Noise2Noise: Learning Image Restoration without Clean Data

0 20 40 60 80 100 120 140 0

—clean targets noisy targets —2 pix —5 pix

(a) White Gaussian, o = 25

Table 1. PSNR results from three test datasets KODAK, BSD300,
and SET14 for Gaussian, Poisson, and Bernoulli noise. The com-
parison methods are BM3D, Inverse Anscombe transform (ANSC),
and deep image prior (DIP).

Gaussian (0=25) Poisson (A=30) Bernoulli (p=0.5)

clean noisy BM3D| clean noisy ANSC | clean noisy DIP
Kodak 3250 32.48 31.82|31.52 3150 29.15|33.01 33.17 30.78
BSD300 | 31.07 31.06 30.34|30.18 30.16 27.56|31.04 31.16 28.97
Set1d 3131 31.28 30.50] 30.07 30.06 28.36]31.51 31.72 30.67
Average | 31.63 31.61 30.89| 30.59 30.57 28.36|31.85 32.02 30.14

work with 128 feature maps, which has been demonstrated
to be very effective in a wide range of image restoration
tasks, including Gaussian noise. We train the network us-

50 100 150 200 250 300 350 400 450

10 pix

(b) Brown Gaussian, o = 25

325

0 2 4 6 8 101214 16 18 20 22 24 26 28 30

20 pix —40 pix —Case 1 (trad.) Case 2 Case 3 (N2N)

(¢) Capture budget study (see text)

~

For alt {urther tests, we switch (rom RED30 1o @ shallower
U-Net (Ronneberger etal, 201 5) that s roughly 10> Tasier
to train and gives similar results (0,2 (4B in Gaussian noise ).
The architectare and training parameters are described in
the appendix.

Convergence speed Clearly, every training example asks
for the impossible: there is no way the network could suc-
ceed in transforming one instance of the noise to another.

noisy, the weight gradients are in fact relatively clean be-
cause Gaussian noise is independent and identically dis-
tributed (i.i.d.) in all pixels, and the weight gradients get

|/
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For alt {urther tests, we sw
U-Net (Ronneberger et al,
/ | o rain and gives similar res
The architectare and train
Low Corruption for
Augmented OCR
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High Corruption for
Contextual Inference
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Method OpenCompass Training Tokens
Short reasoning only 76.0 1.6B
Long reasoning only 77.0 4.4B
Hybrid 771 3.1B

Table 3: Ablation of hybrid reinforcement
learning. We report training token cost and per-
formance on OpenCompass.
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Model Size  Avg Score T Time |
GLM-4.1V-9B-thinking 10.3B 76.6 17.5h
MiMo-VL-7B-RL 8.3B 76.4 11.0h
MiniCPM-V 4.5 8.7B 77.0 7.5h
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