
面向 Skills的上下文工程

演讲人：汪晟杰

CodeBuddy Spec -Coding 的结合实战

目录

01

02

03

04

05

Spec-Coding 与 上下文工程难点

CodeBuddy 如何落地上下文工程

CodeBuddy Agent Skills 实践路径

企业中上下文工程的落地指南分享与思考

2026 年展望

01Spec Coding

提示词工程 – FEIT

反复试错和评测 增加示例和规则

特殊强调调整措辞内容（中/英）

F

目标：
为单个任务找到
“神奇的提示

词”。

I

ET

测试指令跟随能力 按我的示例规则来

不同模型的措辞理解、上下语意不一致 定义不同场景下有不同的思考策略

提示词工程带来的问题

测试指令跟随能力 按我的示例规则来

不同模型的措辞理解、上下语意不一致 定义不同场景下有不同的思考策略

Context Rot

提示词工程是为了获得
最佳推理结果而编写和
组织 LLM 指令的方法，

上下文工程则是指在
LLM 推理过程中，动态
规划和维护最优的输入
token 集合（集合包括
任何可能进入上下文的
信息）

魔法的真相：缺失的上下文

测试指令跟随能力 按我的示例规则来

不同模型的措辞理解、上下语意不一致 定义不同场景下有不同的思考策略

真正的差距不在
于模型，而在于
我们提供给它的
信息生态系统。

1️⃣代码读取 / 上下文工具
•Read File（读取单文件）
•Read Directory / Tree
•Search（全文 / 语义搜索）
•Symbol / Definition Lookup
•Cross-file Reference

2️⃣代码修改工具
•Edit File（Diff Patch）
•Insert / Replace Code
•Multi-file Edit
•Refactor（rename / extract）

3️⃣终端 / 命令执行
•Run Command
•Run Tests
•Build / Lint

Context Rot

上下文工程是一门设计和构建动态系统的学科

文字工匠 (Word-Smith)

雕琢单一、静态的提示词

AI 架构师 (AI Architect)

设计动态、完整的信息生态系统

我们的角色正在演进：从文字工匠到 AI 架构师

上下文的完整解构

规范驱动的开发

(Specification-

Driven

Development)

设计蓝图 (The
Blueprint)

智能体的执行循环

(The Agentic Loop)

动态引擎 (The
Engine)

上下文高效的系

统 (Context-

Efficient Systems)

智能流水线 (The
Assembly Line)

上下文工程2.0 的三大支柱

传统规约 到 AI 驱动型规约的变革

1. 函数规约（Preconditions,
Postconditions, Invariants）
假设你在开发一个计算银行账户
余额的系统，使用规约编程来确
保“存款”和“取款”操作的正确
性。

2.模块间规约（Interface
Contracts）
在微服务架构中，两个服务之间可
能需要遵循一个共享的接口协议。
这个协议定义了双方期望的输入输
出格式和行为，从而保证它们能够
正确协作。
确性。

3. 异常处理规约
假设我们正在开发一个在线购物系
统，用户需要提供有效的信用卡信
息进行支付。如果支付失败，我们
需要提供一个清晰的错误信息，并
要求在支付流程中进行适当的异常
处理。

AI 编程从 Vibe Coding 到氛围编程

特征

⚫ 传统开发者主导的完全纯手动编码

⚫ 手动调试过程

⚫ 依赖浏览器搜索引擎/开发者社区等辅助开发

效果
⚫ 逐行编码，比较低效

学习曲线及要求
⚫ 陡峭的学习曲线，需了解编程底层技术，需自

主学习能力和积累项目中实战经验

特征

⚫ 基于AI 智能体和AI对话至上，采用自然语言

描述需求，实现多文件代码生成，生成执行

的应用

⚫ 精准描述需求和任务表达有助于 AI 生成代码

质量

效果
⚫ 实现工程级别开发，中等效率

学习曲线及要求
⚫ 学习曲线中等，非程序员(如 产品、设计等小

白用户）也可编码，侧重和锻炼表达功能能

力

特征

⚫ 在 Agent 至上，基于规范和设计共识驱动 AI 全栈开发，

批量生成业务代码

⚫ 结构化沟通和系统设计，生成代码包含所需的前提和意图

⚫ 多智能体协作，先共识，帮你理清思路，集成系统思维澄

清

效果

⚫ 规范文档和共识协作，实现系统级别完整意图的规范化代

码，效率高

学习曲线及要求

⚫ 学习曲线高，弥补 Vibe Coding 中的痛点，对规范化、系

统化有更高全局要求和把控能力，锻炼编写能充分捕捉意

图和价值观的规范能力

传统编程
（Traditional Coding）

氛围编程
（Vibe Coding）

规约编程
（Specification-Oriented

Coding）

未来，基于AI的个人氛围编程，以及过渡和适应专业团队协作的规约编程，两种开发范式并存

定义 规划 任务 实现

Speckit 成为规约编程的标配

Specify

开发者描述高级目标
。AI 生成详细规范（
用户故事、验收标准

）。

Plan

人类评审规范，AI 生
成技术实现计划。

Tasks

AI 将计划分解为具体
、可审查的任务单元

。

Implement
AI 逐个实现任务，每
一行代码都可追溯至

规范。

“Every hour spent on planning saves
10 hours of rework.”

规范驱动开发(Specification-Driven Development - SDD)

02CodeBuddy 如何落地上下文工程

用工程纪律约束AI:从规则引擎得到的启示

文件名 仓库数量/采用情况 文件位置 主要支持工具 文件类型 标准化状态

AGENTS.md
超过20,000个开源项

目
仓库根目录或子目录

OpenAI Codex,

GitHub Copilot,

Google Jules,

Cursor, Aider,

RooCode, Zed,

Factory等20+工具

Markdown指令文件
开放标准，正在成为

主流

Claude Code Skills 无具体统计数据
作为技能包存在于.claude目

录

Claude Code, Claude.ai

Web, Claude Desktop,

Claude API

技能包（包含SKILL.md +

脚本 + 资源）
Anthropic专有格式

GEMINI.md 无具体统计数据 仓库根目录或.gemini/GEMINI.md Google Gemini CLI Markdown指令文件 Google专有格式

Github Copilot

Instructions.md
无具体统计数据

.github/copilot-

instructions.md

或 .github/instructions/*.instr

uctions.md

GitHub Copilot (包括Agent模
式)

Markdown指令文件 GitHub专有格式

CodeBuddy.md
腾讯内部、

COdeBuddy 开发者
仓库根目录（基于

CodeBuddy.ai规范）

CodeBuddy AI

Assistant (VS Code

扩展)

Markdown指令文件
CodeBuddy 的 MD

格式

用工程纪律约束AI:从规则引擎得到的启示

Rules 和 SpecKit

为 AI Agent 提供对任务目标、约束
和可用数据的明确定义。
Agent 基于这份“合约”生成代码。

规范即合约 (Specification as Contract)

动态引擎 - Agent 的思考与行动循环

• Gather Context：理解工程
与目标

• Take Action：真实修改代码
与系统

• Verify Work：自动验证结果
并驱动下一轮

“给 Claude一台计算机”——让 Agent 像人类一样工作,通过终端访问文件、运行代码、迭代修正。

构建一个可靠的执行循环

获取上下文的几个大模块

文件系统
Agentic Search

子智能体(Subagen) 定义规则 反馈

将文件结构作为
上下文工程的一
部分。

并行处理任务,
隔离并压缩上
下文。

如代码linting 或校
验邮件地址格式。

视觉反馈(Visual
Feedback):提供
HTML渲染截图,
让模型进行 视
觉验证。

Code Agent 整体架构

• 基于 ReAct 范式，结合多种扩
展组件，系统性提升智能体的
自主编码能力

• 环境/工具集定义：项目探索，代码编辑，命令
执行，MCP扩展等

• 思考模式：调用工具前，进行思考过程，包
括：任务拆分，错误分析，需求理解，反思等

• 上下文管理：阶段式消息总结、策略调整和记
忆管理等

• 工程加速：Prompt Caching, 减少重复计算，
提升响应效率

规约 Specs

基于特定规则的上下文压缩

基于规则的历史结构化剪枝

基于模型的语义压缩

问题 – Prompt Caching Failure

SDD 驱动

•明确表达目标与动机（What/Why），规避过早技术选型（不要在规格阶段锁死 How）。

•反复迭代与澄清，先完善规格，再进入实现。

•先验证计划（可行性、契约、测试口径）再编码。

•让代理/自动化负责细节实现，人侧把控规格质量与决策。

Speckit 成为规约编程的标配

Fast Path Workflow

场景类型 推荐流程 是否生成 spec.md

复杂 bug（跨模块） Clarify → Plan → Tasks → Implement 否（可引用旧 spec）

小 bug（微逻辑、UI、配置） Plan → Tasks → Implement 否，直通快修流程

配置错误 / 更新脚本 Tasks → Implement 否，仅单步任务

小缺陷开发模式的推荐的 SpecKit 指令工作流

缺陷修改类的最佳流程

独立的产设研上下文

设计智能体
精准理解需求将创意和现有的产品设计变成功
能性原型、网页应用程序和交互式用户界面

需求智能体
为产品需求创建详细的问题，

为AI提供清晰的蓝图

开发规划 设计

自主完成代码开发,以卓越的质量完成
代码工程实现

开发工程师

设计师

产品经理

开发智能体

OpenSpec

缺陷修改类的最佳流程

更少步骤的规约编程的尝试

特征：节奏快、切口小、循环短
适用：现有项目功能演进、多功能并行、快
速迭代场景

时间对比：OpenSpec 平均快约 46%，主
要节省在规范生成与任务分解阶段。

03CodeBuddy Agent Skills 实践路径

Claude Skills

CodeBuddy Skills - 渐进式披露机制

不仅是技能封装

Skills 的价值远不止于将功能封装成可

复用的组件，其真正核心在于对上下

文管理的深度探索与系统化设计。

上下文组件的统一管理

Skills 上下文元素整合为统一的调度系统，实

现模块化、标准化、可复用的能力封装。

System PromptPrompt 历史Rules 规范

RAG 知识库MCP Server

上下文管理架构

Skills 统一调度与封装

System Prompt
系统级指令

对话历史
上下文记忆

Rules 规范
行为约束

RAG 知识库
外部知识

MCP Server
工具与服务集成

核心理念：Skills 通过统一的上下文管理，实现了从"Prompt 工程"到"能力工程"的进化。

Agentic Skills

Agent 的定位

Agent 从架构层面可归为基于模型和资源层之上的应用层。

可定义 System Prompt

可引用外部知识库

可接入 MCP 等外部工具

Skills 的定位

实际过程中，我们更希望关注问题解决，而非底层配置。

提供能力与服务中间层

标准化组合与封装

细粒度拆解与执行

协作架构：互补共赢

Agent 职责

任务拆解 流程规划

任务执行 反思优化

Skills 职责

能力封装 工具编排

标准化执行 质量保证

Agentic Skills

通过渐进式披露机制和模块化设计

Skills 将团队的流程、方法、工具、规则、技术和个体经验

转化为可复用、可传承的标准化能力

轻量高效

分层调用，上下文始终保持最优状态

模块化设计

标准化封装，易于维护和扩展

智能协作

让 AI 协作更智能、更高效、更确定

解决的五大实际问题（上）

01 封装专业知识，解决「专业问题」

将特定领域的最佳实践和操作流程封装成可复用的技能。

领域知识封装 最佳实践沉淀 高效任务完成

02 扩展 AI 能力边界，解决「能力问题」

让 AI 能处理更专业、更复杂的任务及更多能力边界的事情。

能力边界扩展 多技能协同 持续学习优化

03 上下文窗口的「成本问题」

通过分层加载，在复杂任务中可降低 40%-60% 的上下文占用。

传统方式 Skills

知识沉淀
将隐性经验转化为可复用的标准化能力

能力扩展
突破 AI 原生能力限制，处理复杂专业任务

成本优化
显著降低上下文占用，节约 token 成本

解决的五大实际问题（下）

04 知识的「可复用性」

Skill 文件可一次创建、共享、复用、更新，团队成员共用同一技能库。

一次创建 团队共享

持续复用 集中更新

05 提供 SOP 工作流模板，执行的「确定性」

Skills 可以调用脚本完成具体操作，把任务处理流程（SOP）标准化。

流程标准化 减少理解偏差 效率大幅提升

知识资产化：隐性经验第一次以结构化形式沉淀，成为

团队的可复用资产

执行可靠性：标准化的 Skills 让模型执行更可靠，也更

容易追踪和优化

04企业中上下文工程的落地指南分享与思考

以 CodeBuddy 为例的 AI Coding 产品架构

• 独立 AI IDE and 主流 IDE 插件: 前者提供高效友好的人机交互界面，很

好地服务技术小白、产品经理、设计师和专业开发者，覆盖从需求、设

计到编码的全流程。后者尊重开发者的选择权，满足其需求

• CodeBuddy Code CLI: 提供开放集成和自动化能力，很好地服务 DevOps

工程师和系统架构师，集成研发流程中，提升自动化运作效率

应用群体

• 研发流程助力: 专注于研发流程规划、设计、编码、测试和部署的关键

阶段，并对每个阶段进行助力，提升研发效率和加速流程变革。

• 腾讯生态融合: 串联司内工蜂、智研、TAPD 等研效生态及腾讯云 IaaS 和

PaaS 产品，提供云数据快速访问并实现无缝云部署；连接小程序生态，

提高小程序开发、调试和发布的效率；构建腾讯特色平台

能力构建

• 上下文平台: 建设 Knot 上下文平台，构建上下文工程，提高上下文信息

的密度和有效性，减少无效 token 消耗，提升 Agent 准确性

• 模型: 收集和扩充语料库，通过与模型的后训练来改进模型生成效果

效果提升

AI IDE AI CLI
VS Code JetBrains 微信开发者工具 XCode VS

Extension（主流 IDE插件）

规划 设计 编码 测试 部署

工作流
研效

工具环境 规则 记忆 总结 知识库

上下文工程

对话模型 补全模型 NES 模型

大语言模型 模型路由 LLMOps

模型训练 向量数据
库

应用层

智能体

场景层

模型层

MCP

企业用户按需选择

• 集成至主流IDE

• 企业内 AI Coding 快

速落地

•

• “集成开发环境”转为

“智能开发环境”

• 产设研一体，软件工程

全生命周期覆盖

• 命令行交互

• 批处理、多系统异步协作

，7x24 运行

• 深度融入云+DevOps与云

原生

AI Plugin AI IDE AI CLI

智能副驾 一站式 AI 工作台 Agent 操作系统

AISE中不同的上下文信息

编码阶段中不同的上下文信息

02

05 04

06 07

项目初始化
进行需求规约化

1. 在本地电脑创建本地项目工作目录、CodeBuddy、Git

2.在 CNB 中创建远端托管仓库，并给到 Craft Agent 进行本地Git 配置
3.将本地代码通过CodeBuddy IDE Craft Agent 进行 Git 版本提交

进行发版和云上部署
根据需求迭代和效果反馈，进行优化

持续迭代和优化

AI 测试

依规约生成AI 测试报告
制定或引入现有编码规范规则，

进行代码生成和评审

CodeBuddy + Git 本地项目开发初始化

1.使用 EARS 需求语法澄清需求，用户管理员需开发用户管理系统需求，验收

标准如：WHEN [condition/event] THE SYSTEM SHALL [expected behavior]

2. 附加信息，生成 Requirement Rules

3.在CodeBuddy中配置Project Rules 并经我确认方案后再开发，需有前端UI效

果

需求规约化： 基于 EARS 进行结构化表达

AI辅助，人审
视

智能发版
人审视

01

设计规约化：AI生成架构设计

基于 EARS 语法进行表达，生成需求文档

进行架构方案设计

生成设计文档
03

1.配置 JS/TS & Go 规范 到 Project Rules

2.借助规范，生成 Go Hello World 服务的代码进行效果比对
3. 参考给定 AICR 规则和尝试制定 AICR 规则并进行评审和 AI 评审HTML报告
及 AI 修复

编码规约化：AI生成架构设计

1.利用规则生成测试 HTML报告并进行完善

测试规约化：AI 测试

1.利用规则智能发版
2.实现部署到云上 CloudStudio

部署规约化：AI 发版
持续优化项目，沉淀更多知识
库及 Rules ，提升代码生成质
量

持续优化与沉淀

CodeBuddy Code 90% 代码由 AI 生成

Agent 提问次数

7914 次

4个人58天79个版

本

需求交付个数

450 个

累计代码行数

68023 行

人均代码产出/日

425 行

研

发

提

效

方

法

论

提升工程师业务视野、架

构能力、规划能力

（人的因素）

提示词/知识库/上下文

治理，精准生成

（环境因素）

把需求拆解为清晰正交的任

务，使用 AI 辅助撰写和拆解

强制团队用提示词

写代码解决缺陷
统一的Prompt

模版

Rules 规范有助于精准生成代

码

变更内容精确

到具体文件

连续 Agent 工作流并行

开发，自动生成（流程因

素）

任务拆解为

worktree

Git操作/Changlog日程操作

脚本化/自动化

利用 Agent

并行执行

高效协作，小步快跑，质

量闭环，降低等待

（协同因素）

用上下文规范达成沟通协作共

识

持续采集用户反馈

每日改进每日发布

CodeBuddy Code 技术负责人心得体会：把 AI 当做高效的同事来驱动和管理，能者借力更强，大胆把活交给AI，人定方

向，做好风格约束，一次只做一件事。

研

发

提

效

实

战

技

巧

明确需求，巧用文件和贴

图，让AI只改"该改的地方"

@ file，截图/拖拽截图，
各种方式让AI理解需求。
明确哪些可以放心交
CodeBuddy 的任务

结合 Git， AI 驱动的 Pull

Request 描述

自然语言完成终端操作，

在线解决 Git 冲突。一次

只做一件事,每次聚焦一

个需求或子目标。失败就

用 Git 回退

智能项目配置管理，灵活使

用长期记忆

用好 CodeBuddy.md 分层
结构。灵活使用 /init 命
令，为你的仓库生成工程
的长期记忆的起始点

规约编码，及时录入和版

本化管理Rules与惯例，

减少环境上下文“口述”成

本

团队统一开发规约及时
版本化管理（如提交规
范等）并借 /memory 机
制，随代码变更，动态
追加或修改

052026年展望

软件工程边界消融，AI Coding 重构组织协作方式

`

业务逻辑编码 调试 测试需求拆解 架构规范设计 原型/UI设计 UI前端编码 安全 部署

• 对话式需求澄清

• 实现目标需求

• 需求规范文档创建

• 项目计划建议

• 前端规范

• 后端规范

• 业务流程梳理

• 安全规范

• 自然语言生

成UI设计图

• 设计图转

HTML代码

• HTML代码转前

端样式与代码

• 基于技术约束自

动编码

• 基于技术约

束、规范、项

目约束自动编

码

• 自动调试、反

思修复

• 提交分支

• 代码扫描

• 扫描报告

• 测试用例生成

• 测试执行辅助

• 测试问题反馈

分析

• 反思修复

• 部署至腾讯

云等基础设

施厂商，发

布可运行应

用

研发规划 设计

AI Coding 常见场景

小程序开发 游戏开发

Web网站开发 轻应用开发 传统业务开发

主要场景：

• 生成小程序原型

• 查阅开发文档

• 定位和修复编译问题

产品方案：

• 分析和拆解用户需求，生成小程序代码

• 内置小程序开发知识库，快速解决技术疑点

• 自动分析并修复编译错误

主要场景：

• 降低新手开发游戏的成本

• 降低大型游戏项目理解成本

• 定位游戏性能瓶颈

主要场景：

• 快速生成 Web 网站页面

• 快速生成响应式布局、SEO 优化、API集成

• 减少重复工作，一键生成 CURD 等常见代码

产品方案：

• 结合需求生成前后端匹配的代码。

• 内置场景的 Web 开发模板知识库

• 结合上下文智能补全代码

主要场景：

• 非技术人员（产品、设计）用自然语言生成应用

• 快速搭建内部工具（如数据看板、简单OA 等）

• 无需部署，一键快速分享

主要场景：

• 生成符合企业开发与安全规范

• 理解复杂的存量项目，避免逻辑冲突

• 生成的代码适配行业特性（金融、消费电子等）

产品方案：

• 内置的 UE/Unity 知识库，辅助生成业务代码

• 召回相关代码，总结关键逻辑与调用链

• 自动检测性能问题，优化代码

产品方案：

• 链接企业知识库，参考企业规范生成代码

• 分析存量代码，关联模块上下文

• 结合业务规则和安全规范进行代码评审

产品方案：

和元宝合作，打造AI编程功能，支持泛开发者自然语

言需求生成轻量应用 ，可运行和分发。创意快速落地

验证。

THANKS
探索 AI 应用边界
Explore the limitsof AI applications

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5: 提示词工程 – FEIT
	幻灯片 6: 提示词工程带来的问题
	幻灯片 7: Context Rot
	幻灯片 8: 魔法的真相：缺失的上下文
	幻灯片 9: 上下文工程是一门设计和构建动态系统的学科
	幻灯片 10: 上下文的完整解构
	幻灯片 11: 上下文工程2.0 的三大支柱
	幻灯片 12: 传统规约 到 AI 驱动型规约的变革
	幻灯片 13: AI 编程从 Vibe Coding 到氛围编程
	幻灯片 14: Speckit 成为规约编程的标配
	幻灯片 15
	幻灯片 16: 用工程纪律约束AI:从规则引擎得到的启示
	幻灯片 17: 用工程纪律约束AI:从规则引擎得到的启示
	幻灯片 18: 动态引擎 - Agent 的思考与行动循环
	幻灯片 19: 构建一个可靠的执行循环
	幻灯片 20: Code Agent 整体架构
	幻灯片 21: 基于特定规则的上下文压缩
	幻灯片 22: SDD 驱动
	幻灯片 23: Speckit 成为规约编程的标配
	幻灯片 24: Fast Path Workflow
	幻灯片 25: 独立的产设研上下文
	幻灯片 26: OpenSpec
	幻灯片 27
	幻灯片 28: Claude Skills
	幻灯片 29: CodeBuddy Skills - 渐进式披露机制
	幻灯片 30: Agentic Skills
	幻灯片 31: Agentic Skills
	幻灯片 32: 解决的五大实际问题（上）
	幻灯片 33: 解决的五大实际问题（下）
	幻灯片 34
	幻灯片 35: 以 CodeBuddy 为例的 AI Coding 产品架构
	幻灯片 36: 企业用户按需选择
	幻灯片 37: AISE中不同的上下文信息
	幻灯片 38: 编码阶段中不同的上下文信息
	幻灯片 39: CodeBuddy Code 90% 代码由 AI 生成
	幻灯片 40
	幻灯片 41
	幻灯片 42
	幻灯片 43
	幻灯片 44

