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DeepSeek-V2-Lite-Chat (Liu et al., 2024) Pre? (ms) 1991 5371 5441 61.63 75.47 i i
15.7B  2xHS00 Reduction 1357%  19.65% 130.01% 140.78% 137.86% - -
i ) ) XGrammar (ms) 16.77 47.94 57.05 74.54 98.64 16247 28542
Qwen2-14B (Yang et al,, 2024a) Pre? (ms) 16.52 47.94 47.89 65.50 90.20 143.83 232.18
INT8  2xH800 Reduction 1152% 1012%  1237% 12.14%  1855% |1147% |18.65%
- ) XGrammar (ms) 28.75 55.12 56.94 68.79 85.92 - -
Llama-2-708 (Touvron et al., 2023) Pre? (ms) 27.20 54.24 54.18 6227 75.72 . -
4 H800 Reduction 1539%  11.60%  14.85%  1948% L11.87% - -
60 20
. Pred . Pre® 40 | - Pre?
—50 . XGrammar mam X Grammar 12.6% . XGrammar
w
— mmm  Origin = mmm  Origin 11.4% mmm  Qrigin
g rigi 119.9% 15 rigi T o 30 rigi 136.8%
=40
£ 134.3%
5 112.8% 15.9% 2 o
30 10
3 T15 9% - T26 4%
= Ue 1 21.29
s Hull " l
s Him
256 512 32

Left: Llama3-8B, Middle: Llama2- 70B, Right: DeepSeek-V2-Lite-Chat.

Chen et al.,, Pre3: Enabling Deterministic Pushdown Automata for Faster Structured LLM Generation, ACL 2025 Outstanding Paper (§10.8%)



= IR 5iESHR: LightLLM—IIECIER
SEREHTRIT

Router ModelBackend
Write batch1, Polli d
batch2, batch3... otling unprocesse
batches

ShmRegsIOBuffer

A EFIREHEE R

iy HEFE2 HEFE3
p
visual ] [ visual ] LLM
\,
15EEY v DMAES
p
shm ZIRSEIRTER ] [ SIESEIEEMbedding
\,
ERR SR

VisualBERFILLM R FS A ENEE

GPU

CPU

threadO thread1
wait wait
E forward forward !
i notify post notify post '
i wait wait |

+  pre-post handle pre-post handle

' notify forward notify forward |

wait wait

| stream sync stream sync

post handle post handle

' notify pre-post notify pre-post

GPUIEIEFICPURIEIER (K



= IR 5iESHR: LightLLM—IIECIER
W ESESER FFvlim/sglangse230%

lightlim sglang

T m
sglang Model Name

Iigh‘lfllm m
Model Name

Qwen3-VL-8B 40908k Qwen3-VL-235B H200 /\-<

vliim/sglanghgas&kLE 2025.12.19, Uid&dEEIminer-USHES, H&32.



= 5]

Buffer Pool

SRS
T

Cache Management for Hybrid Attention Model

KV Cache Pool

1

esd
B

L& NG

(" R

Request1 b

T
T E
11 IBIE

20 21 23

Request2 b

Request3 P

Legend:

Free Block

Token-level kv ] linear bufferfB =B &1,

- Used Block

Hm—Sk

LightLLM— T2 83k
StRE cacheEIRMNL

Hybrid Attention Model Trie

REEBNEER SR

@ root

@ ratchable node ) Auxiliary node @ Eliminated node

ROOT

[al KEY [8]

[4,5] KEY [4,6] KEY 4,71

KEY
VAL VAL [40,50] VAL [40,60] VAL [40,70] VAL
BUF N 15 Ny

1 2 <]

BIEESIRISRN

VAL [4e] VAL [8e]
12 N,
4 1

[8,10]
[80,100]
None

(-]

15



= IRS5IESEME: LightLLM—TIIE8IFR
BER: Mkvllm/sglang 93233

B LightLLM M vLLM M SGLang

Scenario A: High Concurrency Scenario B: Prefix Cache
ShareGPT GSP
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Method Wan2.1-T2V-14B Wan2.2-T2V-A14B Qwen-Image
DINOv3| LPIPST DINOv3| LPIPStT DINOv3| LPIPS*T Method Optical Flow © Dynamic Degree 1
Base model 0.708 0.607 0.732 0.531 0.907 0.483 Base model 10.66 79.35 %
DMD 0.825 0.522 - - - - DMD with SGTS 5.27 72.90 %
DMD with SGTS 0.826 0.521 0.828 0.447 0.941 0.309 Phased DMD(Ours) 7.76 78.71 %
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Method \ T | DINOT  HPSv2t  PickScoref | CUR(%)T  Latency(s), Method | T | CLIPt FID, sFID| | CUR(%)! Latency(s)
PIXART-a 256 x 256 (cfg = 4.5) PIXART-a 256 X 256 (c£g = 4.5)
DPM-Solver++ (Luetal, 2022b) | 20 | 03082 2891  27.89 - 0553 DPM-Solver++ (Luetal, 2022b) | 20 | 3096 2768 3639 | - 0.553
DPM-Solver++ (Luctal, 2022b) | 15 | 02582 27.98  23.02 - 04181505)  DPM-Solver++ (Lu et al., 2022b) 15 | 3077 3168 3892 |- 0418, 32,0)
FORA (Selvaraju et al., 2024) 20 | 02712 28.11 22.44 50.00 0.364(1 525) FORA (Selvaraju et al., 2024) 20 | 3110 2742 37.98 | 50.00 0.364(1 52
HarmoniCa 20 | 03235 2872 2665 56.01 0.346(; g9,  HarmoniCa 20 | 3113 2633 3785 | 56.01 0.3461 60
PIXART- 512 % 512 (ofg = 45) IDDPM (Nichol & Dhariwal, 2021) | 100 | 3125 2415 3365 | - 2572
P o0 |20 | om®  05 285 750 IDDPM (Nichol & Dhariwal, 2021) | 75 | 3125 2417 3373 | - 18681 37
-Solver++ (Luetal, ) - - - ) : FORA (Selvaraju et al., 2024) 100 | 3125 2516 3362 | 50.00 1.558(1.65x)
DPM-Solver++ (Lu et al., 2022b) 15 | 0.3127 29.79 22.03 - 1.291(1 36x) I 100 | 3117 2373 32.23 53.24 1.523
ol 204 | 20 | 03000 2980 0 2108 | 800 1180 eo..  cmmmmm oo ___L el it A e M i (1.80x) | ;
:lom (Selvaraju et al., 2024) 2" 0'309: 29.82 i;':: 300 i";g“‘“") SA-Solver (Xue et al., 2024) 25 [ 3131 2678 3835 | - 0.891
armoniCa W | Gy & : S D2064) g Solver (Xue et al., 2024) 20 | 3123 2745 3901 | - 06651 31) (b) 14-step DDIM sampler (1.41x)
HarmoniCa 25 | 31.27 2707 38.62 | 5419 0.561(1 59x) - 1 | | |
PIXART-a 512 x 512 (cfg = 4.5) P
DPM-Solver++ (Luetal,2022b) | 20 | 3130 2396 4034 | - 1.759
DPM-Solver++ (Lu et al., 2022b) 15 | 3129 2512 4037 | - 129103 360
HarmoniCa 20 | 3129 2481 4018 | 54.64 L0721 64
SA-Solver (Xue et al., 2024) 25 | 3123 2543 3984 | - 2263
SA-Solver (Xue et al., 2024) 20 31.19 2585 40.08 - 1.738(1.30x)
HarmoniCa 25 | 3120 2574 3999 | 54.24 1.406(1 61

|

L ~

(a) PIXART-X

(b) HarmoniCa (1.73x)

afitEin, ke
=T IERIEE

Elot

(d) HarmoniCa (1.44x)
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HSEIGER: LightX2V—ELIFh
W : MEERISH SR, (FISERHE

SErEgNEkHAE

Wan 1.3B (CFG = 5.0, 480p, fps = 16)

Full Prec. | 16/16 ‘64.30 58.21 97.37 70.28 95.94 93.84 28.05 24.67
ViDiT-Q [82]" 4/6 |56.24 50.18 94.81 52.43 89.67 82.53 13.45 19.58
SVDQuant [34]" 4/6 |58.16 51.27 97.05 49.44 93.74 91.71 14.18 23.26
SVDQuant [34]T*| 4/4 [57.57 46.30 94.21 72,22 93.16 77.96 12.73 21.91
LSQ [10]* 4/4 |59.11 49.09 98.35 71.11 92.66 91.67 10.38 18.83
Q-DM [37]* 4/4 160.40 52.50 97.22 76.67 93.37 89.26 13.28 21.63
EfficientDM [19]*| 4/4 |60.70 53.57 96.18 56.39 93.74 91.70 11.77 21.19
QVGC]’] (Ours)‘ 4/4 63.08 +2.38 54.67* 1.10 98.25 0.10 77.78 +1.11 94.08 +0.34 92,57, 0.87 15.32 +2.04 23.01 +1.38
LSQ[1o1* 3/3 |58.80 46.86 98.22 23.61 91.86 89.42 0.89 15.51
Q-DM [37]* 3/3 |56.19 44.95 95.13 76.94 92.09 83.82 1.79 16.89
EfficientDM [19]*| 3/3 [42.32 33.52 96.50 70.28 92.10 74.79 0.04 11.38
QVGGH (Ours)* 3/3 167.35 +8.55 49.71 +2.85 98.93{ 0.71 84.14 +7.20 93.62. 1.52 92.25, 2.83 5.71 +3.92 20.11 +3.22

(a) CogVideoX1.5-5B [78]
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(b) Wan 14B [69]
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Time (seconds)

-~
'

w
'

ro
'

54649

Wan2.1 VAE

VAE Encode/Decode Speed Comparison

03956
02463

Ilghttaew2 1 (ours)

= Encode Speed (s)
- Decode Speed (s)

20697

lightvaew?2_1 (ours)

RREDNME20 +£Z,

GPU Memory (GB)

EEEXREEIFE

VAE Encode/Decode GPU Memory Consumption
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'
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E
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ro
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(RS EATEZBR R TS S B (S hniEL

, Latency for Wan2.1-12V-14B-480p on 8 GPUs
LightX2V Parallel Performance

LightX2V xDiT FastVideo

15.48
. l 1
single gpu — g 1 SGkang 3.26%
2 | 3.
%)
<
cf (2 gpus) T 101
i
- ]
cfg + seq (8 gpus) 8 | 2.73%
O ] 5.48
£ 5- /\ 4.75
ofg +seq + fp8 comm (8 gpus) = 159X 5.0 294
| (—\ : 2.01
0 L 5 ; 4 5 ] 0.75 119 00M 00M 00M OOM
Time Per Step (s/iter) H100 RTX 5090 RTX 4090

bt L 4
(ay

%70 1.5£5090 LA HT 5090_E AR [F#ESRRI8-RHITIILL
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BFEXEE (GB)
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= MRS EBERM: LightX2V
BB MR- TSA4ERL : Wan2.1-12V-14B-480P

ul Cross-Framework Performance Comparison (H100) | Cross-Framework Performance Comparison (RTX 4090D)

Framework GPUs StepTime Speedup Framework GPUs StepTime Speedup
Diffusers 1 9.77s/it 1x Diffusers 1 30.50s/it 1X
xDiT 1 8.93s/it 1.1x FastVideo 1 22.66s/it 1.3x
FastVideo 1 7.35s/it 1.3x xDiT 1 OOM OOM
SGL-Diffusion 1 6.13s/it 1.6x SGL-Diffusion 1 OOM OOM
LightX2V 1 5.18s/it 1.9x & LightX2V 1 20.26s/it 1.5x %
FastVideo 8 2.94s|it 1x FastVideo 8 15.48s/it 1x
xDiT 8 2.70s/it 1.1x xDiT 8 OOM OOM
SGL-Diffusion 8 1.19s/it 2.5X SGL-Diffusion 8 OOM OOM

LightX2V 8 0.75s]/it 3.9x # LightX2Vv 8 4.75sit 3.3x #

37



= MRS EBERM: LightX2V
BB MR- TSA4ERL : Wan2.1-12V-14B-480P

® HERER HEAR
H100 » Wan2.1-12V JL%E&?

MEEFIE: RTX 4090D (24GB)

B 1.9f8 Mk

& vs LightX2v

13 1.9x 1.5x
1x 1.1x . 1.3x
1x
Diffusers xDiT FastVideo LightX2v
Diffusers QWI SQL B’]ﬂ FastVideo LightX2v
sEHHR
3.9x HAtiESR Lightx2V
. 2.5x OOM \-I—EEII]
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= MRS EBERM: LightX2V
BPUR-BEIRER: Qwen-image

H100-Qwen-image-edit-E2F& H100-Qwen-image-edit-2509-8+F

B HTE) B8
SGL-Diffusion(fa3) 0.85s/it (50step) SGL-Diffusion(fa3) 0.73s/it (40step)
vlim-omni(fa3) 0.81s/it (50step) LightX2V(fa3) 0.63s/it (40step)

LightX2V(fa3) 0.75s/it (50step)
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B

1+ (/5] (m)
Casez [block 1o bockict | lock 14

—————————————— U2\
ases [ block o Wockict | blocki W(ao

TewDas 1

Case 12 3 e I + u (m)
ResNet-18 18.88 4574 48.07 asmef T C02 n
ResNet-50 434 4698 49.07 0w

MobileNetV2 583 5071 5120 e
RegNet-600MF  42.77 60.94 62.07
MnasNet 26.62 5879 60.19

0.005

ey
sharpness

0 with probability p
& —1 with probability 1 —p " -

WIESRSS RELRTESE
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Wei et al., QDrop: Randomly Dropping Quantization for Extremely Low-bit Post-Training Quantization, ICLR 2022



n ZEEESE: LightCompress—HIiARI
BIR: TE2/ALASARIRFHAS % LA L

Jiik Eb%¥ Resl8 Res50 MNV2 Reg600M Reg3.2G
A 32/32 7106 77.00  72.49 73.71 78.36
1 2R R AZ BB 4/4 6030 70.00 49.70  57.71%* 55.89*
SE R Ak 789 4/4 69.60 75.90 47.16% - -

Hb AR 43 86) 4/4 6756 73.71 - - -
IE 2Nt Stk 4/4 6796 73.88 61.52 68.20 73.85
B AL 2 36 TS (R R b 4/4  69.10 75.03  67.89 70.62 76.33
RS Bk 1+ 4/4 6936 7476 6433 - -
ey 04 4/4  69.60 7505 66.57 68.33 7421
BEHLA GBS EL +  4/4  69.62 7545  68.84 71.18 76.66
1 4 A2 AL, * 2/4 018 0.4  0.13 0.17 0.12
BN RALE * 24 011 012 015 - -
R ) ke * 2/4 6212 6611 3631 57.00 63.89
BEAL S I OIS Rk 2/4  64.66 70.08 52.92 63.10 70.95
RS B 2/4  64.14 6840 4152 59.27 65.33
eI + 2/4 6480 7029 5334 59.31 67.15
BEOLCTE IR T 2/4 6525  70.65  54.22 63.80 71.70

{E2Lb%s LSRR

ResNet-18 W3A3

RegNet-600MF W2A4

]
Accuracy

60

55

—— QDrop
----- No Drop

60

Test Accuracy

RS

FIBIEEY
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50.46
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Wei et al., QDrop: Randomly Dropping Quantization for Extremely Low-bit Post-Training Quantization, ICLR 2022
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Wei et al., Outlier Suppression: Pushing the Limit of Low-bit Transformer Language Models, NeurlPS 2022



EEHERMK

—— Ours, 6 epochs
LSQ+, 6 epochs
—— LSQ+, 12 epochs

0 5000 10000 15000 20000 25000

EiEE

Steps

Tl RIE
$BTLS 2y

Method Bits CoLA MNLI MRPC QNLI QQpP RTE SST-2 STS-B Av,
(W-E-A) (Matt.) (acc m/mm) (fl/acc) (acc) (f1/acc) (acc) (acc) (Pear./Spear.)

BERT 32-32-32  59.60 84.94/84.76 91.35/87.75 91.84 87.82/9091 7256 9335 89.70/89.28 83.83
MinMax 8-8-8 57.08  82.77/83.47 89.90/85.78 90.76 87.84/90.74 69.68 92.78  86.83/88.56  82.28
OMSE [28] 8-8-8 57.15 84.04/84.29 90.10/85.78 91.12 87.64/90.54 7220 93.23  87.90/88.65 82.90
Ours 8-8-8 61.64 84.38/84.53 91.44/87.75 91.49 87.92/90.77 72.20 93.81 89.23/89.01 83.96
OMSE 6-6-6 3544 74.00/73.30 81.54/76.47 84.66 76.07/82.12 64.26 86.27 85.57/86.05 73.52
Percentile [29] 6-6-6 37.32  72.40/71.69 85.09/79.90 79.37 72.58/80.19 61.73 87.27 86.38/87.29 7293
EasyQuant [40] 6-6-6 38.16  75.82/75.66 82.51/77.45 84.94 75.31/81.81 6534 87.27 85.50/86.33 74.49
Ours 6-6-6 54.40  82.02/81.69 87.45/83.33 89.82 84.69/88.94 70.76 91.86 88.65/88.55 81.19
PEG [26] * 8-8-8 59.43 81.25 88.53 91.07 89.42 69.31  92.66 87.92 82.45
Ours * 8-8-8 59.83  82.93/82.59 91.33/87.99 90.02 87.45/90.34 70.04 92.66 88.42/88.81 82.81
PEG * 6-6-6 946  32.44/32.77 83.64/78.43 49.46 29.93/62.97 70.76 90.14 52.79/53.22 54.11
Ours * 6-6-6 42,27 78.54/78.32 85.33/81.13 85.36 78.47/84.66 68.59 91.74 87.33/87.19 77.31

BH

SaEE

El, BIRSEIRINT6HS

Ef)::

Wei et al., Outlier Suppression: Pushing the Limit of Low-bit Transformer Language Models, NeurlPS 2022
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