
数据驱动的智能诊断系统：多智能体系统在
生产环境中的技术落地与实践

演讲人：赵庆杰



目录

01

02

03

引言：智能体实践背景与挑战

实践路线：运维智能体的探索路径

总结与展望





01引言：智能体实践背景与挑战



实践背景—承载百万级别的应用的容器 PaaS 系统

业务应用

通过 war/jar/php zip源码包 /Docker 镜像等多种方式部署

微服务
应用

单体
Web 应用

移动
APP 后台

小程序
后台

SaaS
类服务

定时/xxl-Job 

Serverless
应用引擎
（SAE ）

平台提供的 K8s 集群 + 微服务引擎 + ARMS应用监控 + SLS Logtail

阿里云沙箱容器 2.0 IaaS 资源层（神龙+ECI+VPC+… )

Java 冷启动加速

应用管理

分批/金丝雀发布

自动构建镜像

权限隔离/审批

全套微服务治理

无损上下线

Spring Cloud / Dubbo 无缝迁移

微服务流量灰度

一键启停环境

运维配套

事件中心

自动弹性伸缩

端云联调

CICD集成生命周期管理 服务鉴权限流降级 日志 & 链路监控日志管理

...



实例健康检测

OOM

物理机故障

网络故障

实例重启

机器负载过高

过保机型

机器组件故障

机型不匹配

性能问题

P2报警过多

无法发现问题

没有有效的总结和处理

报警处理

传统协议改造成本高

交互模块太多

中间过程步骤多

Chat Ops

重复的疑难问题耗费人力



Serverless：智能诊断智能体



01运维智能体的探索路径



三个关键阶段

24年开始探索

初探=>静态流程
25年下半年

初见成果=> A2A

接下来

未来=> 强化学习
25年上半年

小试牛刀=> AI Agent

P

快速定位
提高人效

C

DA



01阶段一：静态工作流



数据丰富度不足

通用思考模式不成熟

在 RAG 之上做补充

LLM 未成熟

各类数据查询不统一

数据的连接性无法表达

数十种不同数据来源

RAG 的补充

数据查询不统一

挑战

原始状态，简单处理日常的答疑



架构方案

报警触发

手动触发 问题分析 下钻分析获取数据 生成报告

LLM

客户触发

RAG



痛点

模型

➢ LLM 能力偏弱，不具备plan
的能力

➢ 重点在优化提示词

➢ 依赖 Token 数，无法继续提
升体验

数据

➢ 数据之间的联系描述复

杂，只能靠流程代码保

证

➢ 数据源很多，如何收敛

能覆盖35% 左右的场景，远不够完美

流程

➢ 流程固定，无法适应后查

询诉求

➢ 无法回溯历史，无法自行

进行进化



02阶段二：单 Agent 架构



架构方案

输入问题

实例服务 ……

基于 RAG，数据
库，获取信息

主 Agent

Context

监控

Tools

生成报告 用户返回

Agent 接收指令后，进行思考推理，并生成步骤：To

Do List,每一个步骤，可以使用已经安装的工具（MCP ）

调用，以及 sandbox::浏览器等能力去获取所需的信息，当

执行完所有步骤，综合评估分析生成指令要求的报告。

主 Agent 工具 Tool Sandbox

初期使用 FunctionCall的能力去扩展实时查询的需求，

逐步演变到 MCP 工具，通过统一的 MCP 协议，对接了服

务，实例，监控，日志等等 MCP 工具，MCP 工具替代了

“search”片段，提供了更完整的信息给大模型做参考。

沙箱也是非常好用的工具，特别是在文章中有链接但没

有具体信息的场景下，通过浏览器沙箱获取到网页内容，并

且可以并发执行，相互不影响，用完后删除。但是要依赖强

大的弹性算力基建。



痛点

能覆盖50% 左右的场景，上下文管理是
最大瓶颈



03阶段三：Multi-Agents尝试



初始方案

输入问题

实例服务 ……

基于 RAG，数据
库，获取信息

主 Agent

Context

监控

subAgent as tool

生成报告 用户返回

Context Context Context Context

第一个Agent 最好使用具备思考推理能力的大模型，接

收指令后，先进行思考推理，并生成 Plan ，根据当前注册

的 SubAgent 进行分配，并依次发送指令给 subAgent 进

行执行返回，主Agent 结合返回信息继续推进完成整个任

务。

主 Agent 工具 Tool 挑战

每一个 SubAgent 有自己的大脑（LLM ），但不都是相

同的 LLM ，根据需求选择符合的LLM ，防止大材小用浪费

成本，SubAgent 与 主Agent 是贡献上下文的，以此减轻

传递负担。

流程设计比较理想，但是落地存在很大不足，整个流程

不可控，尝尝出现时间超时，或者步骤丢失，导致整体的效

果相比静态的工作流效果还差，如何解决 Workflow 的确定

性执行，是我们面临最大的挑战。



迭代方案

实例服务 ……监控

Agent as tool
Context Context Context Context

主 Agent

Context

输入问题 Planner Agent

Context

用户返回

并行 Task2

并行 Task3

串行 Task1 串行 Task4

主流程 Task 节点

为了解决执行过程中的不确定性，采用有向 DAG 工作

流的方式去确定性的执行 Planner 拆分后的 Action，每一

个action由工作流的机制保证容错，确保每一个步骤有一

个结果，并且可以某一些工作流可以并行，从而加速 Agent

执行的时间。

Planner Agent Task 节点 优势

基于DAG 的每一个节点会独立完成一个任务，这个任务

是由 Muti-Agents 完成，采用 Sub -Agents 的模式，

Agent 之间共享上下文信息，从而完成独立的一项任务，任

务完成后，会输出给 DAG 工作流平台中，由 DAG 决定是

否继续。

通过工作流机制解决了时间不可控的问题，通过 Muti-

Agents 模式解决了上下文过大问题，整体方案借助了静态

工作流与 A2A 的方案优势，从而完成目标工作。



痛点

能覆盖90% 左右的场景，准确率仍需要
提升



02 项目复盘总结



强大的基础设施支撑高效开发

Agent
Context

接入

质
量
评
估

运
维
管
控

快速开发

Session亲和 无损上下线 Fallback 限流

负载均衡多协议支持高速缓存并发控制

快速部署 AI Coding 凭证管理 模型部署

运行时SandboxMemory 支持一键启动

环境管理

权限管理

存储管理 任务管理

CICD 流程XPU 资源管控

单点登录

成本管理 Token 数统计

监控告警

模型评估 压测

E2E回归评测

全链路监控

Tracing



Data For AI

如何让模型理解你的数据

• 数据源管理

• 数据关系的表达



架构选择平衡

Agent
Context

Agent
Context

Agent
Context

Agent
Context

Agent

Contex
t

稳定性，可控性

复杂度



快速开发

AI Agent

创建Agent

LLM

Prompt

Tool

➢ API模型一键绑定、开源模型一键部
署，私有化模型快速连接

➢ 模型代理、模型负载、熔断、安全等机制确保
模型服务高可用

➢ 记忆存储、知识库等采用开源托管一键部署，
确保厂商锁定风险最低

➢ VPC/IDC内已有记忆或知识库一键绑定消费，
数据安全不出域

➢ 无代码、高代码、Flow多种创建模式，编辑与自
由兼顾无代码向高代码转换，业务场景自由升
级；

➢ 开发框架无锁定，业务迁移无需重构；天然流水
线集成，CICD更简单

➢ 一切皆可MCP，Sandbox、Agent、API工具等均可
一键 MCP，快速集成

➢ MCP支持代理模式、支持Hook注入、支持语义检
索、智能路由等

开发者
用户

使用Agent

企业级
能力加持

Serverless
弹性、按量、免运维

会话、请求、实例
多种隔离机制

全链路可观测
监控、日志、链路追踪

效果评估
Agent持续进化



上下文工程

长任务如何保证执行完整性

拆分的任务数过多，会步骤遗忘，幻觉放大

• DAG 有向工作流

• 记录中间过程

• 上下文共享

如何使用 Rag && Memory

Agent 的核心竞争力：决定性于：Rag & 记

忆。

• 向量数据库是否足够？

• Rag 的演进方向？

• 记忆要记录什么？何时读取？何时写

入？



工具管理

工具过多导致效果下降

并不是工具越多越好，最重要的是选出适合

的工作

• 如何选出最适合的工具

• 工具的参数的正确性如何保证

• 工具的参数如何界定

工具如何做到复用

我们会使用很多的工具，各自为战？如何最

大化的复用工具。

• 工具市场的重要性

• 如果保证工具的稳定性



全链路可观测

Mobile
APP

Web
APP

User

device

云原生API网关
（南北向流量网关）

函数计算 function AI 
（CPU + GPU）

AI网关

多种部署方式的LLM

模型调用

AI应用统一入口 模型代理

OpenAI Gemini

通义千问 DeepSeek

PAI/百炼/FC GPU

RocketMQ for AI

同步

异步

AI网关

新建 MCP Server

工具调用

MCP 代理

函数计算 FC

存量业务 MCP 化
存量业务

一键转化

AI 全栈统一监控

端到端链路追踪

日志存储与评估分析

基于 Prometheus 构建 AI 全栈监控大

盘，包括模型性能分析、Token 成本分

析、GPU 资源异动分析等

基于 OpenTelemetry Trace 实现用户

终端、网关、模型应用、模型服务、外

部依赖工具等全链路追踪。

构建统一日志分析平台，对模型调用日

志进行二次评估分析，实现质量、安

全、意图提取等语义检测。

构建部署 AI Agent

Serverless 计算运行时

MCP Server
Agent

runtime
SandBox

流程式

编码式
Agent
Scope

Lang
Chain

……SDK

运行时

云工作流 AI Studio

Workflow Function

托管 Dify

节点 A 节点 C节点 B

AI 应用观测：Open Telemetry 可观测标准协议



数据驱动的迭代



模型评估的重要性



02 未来规划



数据驱动 Agentic AI 全链路研发闭环

Agentic AI 应用的开发
• 低代码白屏化脚手架

• 高代码无框架绑定开发

• 版本的无损平滑升级

• 上下文工程

模型微调
• 基于反馈的高质量数据集，对模型进行微调

• 支持主流的强化学习框架运行

• 预集成微调生态的插件

Agent 数据收集
• 无侵入式的全链路采点

• 一键开启，默认集成

• 除基础监控外，提供全链路的tracing

模型部署
• 支持 ServerlessGPU 算力

• 支持微调后的模型进行私域一键部署

数据

飞轮

Agent 反馈评估
• 全链路的数据标注

• 反馈数据收集

• 基于数据测试集的回放





THANKS
探索 AI 应用边界
Explore the limitsof AI applications


	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5: 实践背景—承载百万级别的应用的容器 PaaS 系统
	幻灯片 6: 重复的疑难问题耗费人力
	幻灯片 7: Serverless：智能诊断智能体
	幻灯片 8
	幻灯片 9: 三个关键阶段
	幻灯片 10
	幻灯片 11: 挑战
	幻灯片 12: 架构方案
	幻灯片 13: 痛点
	幻灯片 14
	幻灯片 15: 架构方案
	幻灯片 16: 痛点
	幻灯片 17
	幻灯片 18: 初始方案
	幻灯片 19: 迭代方案
	幻灯片 20: 痛点
	幻灯片 21
	幻灯片 22: 强大的基础设施支撑高效开发
	幻灯片 23: Data For AI
	幻灯片 24: 架构选择平衡
	幻灯片 25: 快速开发
	幻灯片 26: 上下文工程
	幻灯片 27: 工具管理
	幻灯片 28: 全链路可观测
	幻灯片 29: 数据驱动的迭代
	幻灯片 30: 模型评估的重要性
	幻灯片 31
	幻灯片 32: 数据驱动 Agentic AI 全链路研发闭环
	幻灯片 33
	幻灯片 34

