
以 KVCache 为中心的云
上 LLM 推理软件栈

演讲人：马腾



目录

01

02

03

04

05

06

大语言模型推理和KVCache

KVCache 开源项目：Mooncake

云原生下的KVCache

KVCache 智能化调度

Mooncake开源生态

以KVCache 为中心的解耦架构





01大语言模型推理和KVCache



推理过程KVCache 计算方案

量化
FP8/Int4

只存部分层
YOCO/CLA

降低维度
MLA

减少Head数
GQA/MQA

高效显存管理
Page Attention
vAttention

静态稀疏化
滑动窗口

例子



KVCache 缓存对存储系统的挑战

◼ 每一个 1 token 对应 2 * 层数 * 隐藏维度 = 数十乃至数百 KB 的 KVCache

◼ 不仅数据量极大，还需要尽可能地快速进行传输不然会导致 GPU 空转

一个 Token
（数 Bytes 级别）

一个 Token 对
应的 KVCache
(数十 KB 级别)

单台机器的内存
（数 TB 级别）

单张 GPU 显存
(数十 GB 级别)

推理可复用

应缓存的中

间结果

KVCache

(数百 TB 乃

至 PB 级别)

每天数千亿 Token 
的大型推理服务



KVCache 计算方式演进

vLLM

Page-Attention

SGLang

Prefix Attention

Orca

Continus Batching 通过切分任务打满算力

Page粒度管理减少显存占用

尽可能复用KVCache

DeepSeek NSA

Sparse KVCache
降低KVCache的产生量



KVCache 数据优化技术

模型级别优化

通过算法优化（Head/Dimension）减少KVCache产生量

KVCache压缩

KVCache量化
使用低精度格式

KVCache消除
减少无关重要的数据



KVCache 复用（Reuse ）

◼ 在PagedAttention中，KV Cache只是在一个请求内复用，而没有做到跨请求的KV Cache复用
◼ 在多轮对话的场景下，下一轮的prompt其实刚好就是上一轮的prompt+completion

SGLang vLLM DeepSeek
Hash RadixAttention的方
法，它使用哈希码作为物

理KV Block的唯一标识
hash(prefix tokens + block tokens) 

<--> 
Logical KV blocks 

-> 
Physical KV blocks

上下文硬盘缓存技术，把预计未
来会重复使用的内容，缓存在分

布式的硬盘阵列中

原生支持
通过RadixAttention来实现

Prefix Caching
first-come-first-serve，无法

达到最优的缓存复用效果
cache-aware scheduling的调

度算法



KVCache 共享和复用基本原理

“What day is it today”

Prefill for Request I

day

What

today tomorrow

it

is

it
toda

y

is

day

What

(5 tokens computed)

“What day is it tomorrow”

Prefill for Request II

(1 token computed)

What

dayday

What

is

it

is

it
tomo
rrow

tomorrow

it

is

day

What
KVCache

复用

前四个字

符和第一

个请求相

同，因此

无需重复

计算可以

直接复用

中间结果

以存换算基本原理：前缀匹配的中间结果可被复用



KVCache 共享和复用基本原理

所有查询
可复用

• 大模型辅助读论文场景为例

System Prompt: 你是一个论文阅读助手，…

User Question 1: 
总结一下这篇论文

User Question 2: 
这篇论文关键创新是什么

User Question 3: 
有哪些相关研究？

User Question 4: 
可以进一步探索什么？

热点
论文
复用
率高

可
复
用
长
度
长

问
题
短

不同的用户会对同一篇论文进行不同角度的提问，只要能将共享的可复用的部分保存下来多次
复用就可以大幅度降低算力开销



03以KVCache 为中心的解耦架构



将Prefill与Decode解耦，让

“算力-吃紧”与“带宽-吃紧”

任务各得其所，推理延迟-

吞吐双降

PD分离

把Attention 计算和 Expert 

路由/计算分到异构硬件，

CPU缓存KV、GPU稀疏激活

专家，MoE模型显存换带

宽，成本直降

AF分离

把多模态编码、KV生成、

自回归解码拆成三阶段流

水线，单阶段内存爆降

95%，批尺寸×20，长图长

视频秒级TTFT。

EPD分离

把RLHF中的在线样本生成
（推理）与策略梯度更新
（训练）彻底分开，独立
扩缩容、异构部署，训练
吞吐提升2.6×，成本再降
30%。

推训分离

不同解耦架构带来的优势



不同解耦架构在推理训练框架中的位置

PD分离

EPD分离

AF分离

推训分离



基于解耦架构的KVCache 共享和复用
点对点传输（GDR）点对点传输（CPU Offload） Store接口

维度 LayerWise Chunk Level 全量传输

吞吐量 中 高 低

扩展性 强 中 弱

实现难度 复杂（动态调度） 中等（块管理） 简单



04KVCache 开源项目：Mooncake



Mooncake 项目架构
Transfer Engine：
◼ 全链路零拷贝、多网卡池化
◼ 最高8*400Gbps聚合带宽、拓扑感知
◼ 故障容错，负载均衡，多协议支持。
◼ 更充分地发挥高性能网卡的优势，
◼ 相比 nccl 更加灵活，
◼ 支持动态拓朴、故障容错

KVCache Store：
◼ 充分利用GPU 集群中闲置的内存和带宽
◼ 省成本的同时降低响应延迟
◼ 透明多级缓存，VRAM/DRAM/SSD/Remote
◼ 进一步下沉到底层廉价存储

Production Ready:
◼ AC2镜像 + K8S部署
◼ 提供whl包一键安装
◼ Nightly Build & End-to-end CI Test



Mooncake Store

◼ 与传统缓存系统的区别:

◼ Key 由 value 通过哈希计算得到，无需 update操作

◼ 支持Lease，没有版本管理的需求

◼ 灵活性与可定制性:

◼ 提供底层对象存储和管理功能。

◼ 具体缓存策略由上层框架/用户实现（如 vLLM）

◼ 系统特性:

◼ 提供KV复用率，TTFT等指标

◼ etcd可靠性服务，高可用模式

◼ 数据持久化能力

◼ 提供分层存储能力（NFS/3FS）

◼ 提供Restful API/独立服务

◼ 多语言接口/零拷贝能力



Mooncake Store 分层存储

3FS kvcache object

◼ 存储：辅存上的KVCache object如何组织？（映射关系，抽象粒度？）

◼ 接入：DFS的能力如何“优雅”地接入store？（写盘时机，与evict结合？）

◼ 管理：逻辑层谁来负责管理3fs上的kvcache？（client or master管理？）

◼ 问题1：get每次只进行单个kvcache数据的读取，

不能充分利用3FS的并发读取性能？

◼ 解决思路：使用batchget操作，多线程同时读取

多个kvcache数据。

◼ 问题2：使用通用的POSIX接口需要经过fuse客户

端，过程中存在多次上下文切换和数据拷贝

◼ 解决思路：引入3fs高性能读写接口USRBIO支

持，并进行优化，以实现高吞吐、低延迟的数据

读写。

◼ 问题3：client端负责元数据管理，带来了数据一

致性问题，查询文件系统也会带来性能开销

◼ 解决思路：将ssd的metadata元数据信息管理从

client迁移至master，使master统一管理disk和

memory两种类型的元数据信息。



Mooncake 对于大模型推理生态支持
Feature Project Type Transfer KVCache Store Ckpt Engine

Inference

SGLang Inference ✓ ✓ ✓

vLLM V0 Inference ✓ ✓ ✓

vLLM V1 Inference ✓ ✓ (w/ LMCache) ✗

LMDeploy Inference ✓ ✓ ✗

Chitu Inference ✓ ✗ ✗

RTP (Alibaba) Inference ✗ ✓ ✗

Middleware

TBase (Ant) Middleware ✓ ✗ ✗

Dynamo Framework ✓ (w/ Nixl) ✗ ✗

LMCache Middleware ✗ ✓ ✗

RL Training Slime RL Training WIP WIP ✓



Mooncake 对于大模型推理生态支持（PD 分离）

基于Transfer Engine的SGLang PD分离 基于Store的vLLM PD分离



Mooncake Store + HiCache （KVCache Offloading）

引入Mooncake作为L3，实现跨机 KV 共享与持
久化，支持无限长上下文（Infinite Context），
解决多实例间的重复计算问题
HiCache高性能IO Kernel

 流水线掩盖：将 GPU 计算与 KV 数据传输（H2D/D2H）重叠执
行，智能预取隐藏 I/O 延迟

 零拷贝：利用 Mooncake 的 RDMA 机制与 GPU Direct 技术，绕
过 CPU 拷贝，降低通信开销



Mooncake Store + LMCache /vLLM （Orchestration）

Two methods
Support vLLM v1

• LMCache Storage Backend

KVCache Reuse

• NIXL Plugin for P/D 



06云原生下的KVCache



当前挑战：显存墙与架构演进
当前挑战：显存墙与架构演进
显存压力： 在长上下文和高并发场景下，KVCache 显存占用常超 70%，单机 GPU HBM 和 CPU 

DRAM 已难以为继 。
架构演进： 推理架构正从单体向分布式演进（Prefill-Decode 分离、KVCache 外置），以实现

跨请求缓存共享与弹性伸缩 。
运维痛点： 传统的 K8s Workload 难以处理推理角色间的强依赖与拓扑感知，且滚动升级常导

致缓存丢失与性能抖动 。

核心解决方案：RBG + Mooncake
Mooncake (存储引擎)： 分布式 KVCache 存储，提供高吞吐、低延迟的 L3 缓存服务 。
 RBG (编排引擎)： RoleBasedGroup 是面向 AI 推理的 K8s 原生 API，统一管理多角色协同、部

署与弹性 。
价值主张： 将 Mooncake 作为 RBG 编排下的补充角色，实现性能最大化（L3 缓存）与生产级

稳定性（原地无感升级） 。



核心技术双引擎：Mooncake 与 RBG

组件 Mooncake (分布式 KVCache 存储) RoleBasedGroup (弹性角色编排)

定位 SGlang 的高性能分布式 L3 存储后端 视推理服务为“角色有机体”而非孤立 Pod 的编排引擎

核心特性

RDMA 加速 + 零拷贝：实现高带宽、低延迟访问

智能预取：支持 GPU 直传，最大化 I/O 效率

PD 分离支持：提升大规模集群 Token 吞吐量

SCOPE 能力框架：

• Stable: 拓扑感知的确定性运维

• Coordination: 跨角色协同（如部署、升级）

• Performance: 拓扑感知调度 (NVLink/PCIe 优先) 

技术深度解析——存储加速与智能编排

RBG 的设计理念： “角色（Role）”即一等公民，解决大模型推理作为“有状态、强拓扑”应用的矛盾



部署架构：Router + RBG + SGLang + Mooncake Store

系统角色构成
 SGLang Router： 统一入口与流量调度，智

能分发至 Prefill 或 Decode 后端
 Prefill Worker： 计算密集型，负责 Prompt 

前向计算并生成初始 KVCache
 Decode Worker： 延迟敏感型，依赖

KVCache 进行 Token 逐个解码
 Mooncake Store/Master： 独立外置存储角

色，持久化存储 KVCache

协同工作流
 所有角色通过 RBG 进行紧密集成与协同
 利用 RDMA 网络在计算节点与 Mooncake 存

储节点间高速传输 KVCache
 Router 根据负载动态调度，实现动态批处

理与连续批处理



解决行业难题——原地无感升级 (In-place Update)

痛点：传统的滚动升级风险
Mooncake 作为有状态服务，传统 Pod 重建会导致内存中 KVCache 丢失
后果：活跃会话中断，被迫重新 Prefill，导致 P99 延迟毛刺飙升，吞吐量断崖式下跌

解决方案：RBG 原地升级 + 持久化
Mooncake 本地持久化：支持KVCache 快照至共享内存/本地盘，进程重启后快速恢复数据
 RBG 原地升级策略：K8s 原生 API 实现原地替换容器镜像，复用节点资源，避免 Pod 重建

最终效果
升级无感，服务不抖： 彻底避免缓存失效导致的重计算，保障端到端稳定性
运维自动化： 将复杂的分布式协同升级转化为标准化的运维能力



ACK场景下部署效果

结论
引入 L3 Mooncake 缓存后，能够显著提升缓存命中
率，大幅降低延迟并提升系统整体吞吐量，实现性
能与成本的平衡



06KVCache 智能化调度



AIGW网关架构
灵活且强大的 Envoy Golang 扩展

底层 Proxy 能力基于标准 Envoy 和 Istio 构建
使用 Golang 来实现复杂调度的能力

基于Metadata Center 实现准实时负载指标收集

大规模场景的多因子综合权重负载均衡策略

水平可扩展的高可用架构设计。



多因子综合权重负载均衡策略

综合权重算法：缓存命中率、请求数量、 Prefill负载三个
选取Top K节点：缓存命中率越高、请求数量越低、Prefill负载越轻的节点得分越高
整体策略导向为KVCache亲和性优先和Prefill优先，同时兼顾请求数量的均衡性。



精确KVCache Aware算法

问题背景
近似 cache-aware 的方案，引入一定的 KVCache 命中率误差

工作流程
 由引擎暴露一个新接口来生成 KVCache key
 网关通过调用这个接口获取到 KVCache key，
 从 Mooncake master 节点查询不同节点KVCache 命中率

对比于独立的 KVCache Indexer 组件
 通过复用 Mooncake Store Master
 减少 KVCache Location 信息的传输
 减少一个独立组件的维护



05Mooncake 开源生态



已有AI Production Stack开源生态
AIBrixDynamo

llm-d



Mooncake AI Production Stack

AI Gateway with Inference Extension

Inference Engine

AIGW SGLang Router Semantic Router Load Balance

SGLang vLLM RTP TRT-LLM ….

Data Workflow
MC EP MC Dist Transfer Engine

KVCache/Weights Mgt
MC Store Ckpt Engine

O
rch

estratio
n

R
B

G

Multiple Transport
RDMA/NVLink/HIP/TCP/SHM/CXL

R
L Fram

ew
o

rk

Slim
e

R
O

LL
…

Data Sources
OSS HF/MS

HW compatibility
Nvidia/AMD/mthread/Ascend/…



Mooncake 开源发展时间线

2024 年 3 月Kimi 凭借长文本处理能力出圈
Mooncake 上线并经受住流量剧增的考验

2024 年 11 月 Mooncake 开源，应用于阿里/蚂蚁
与 vLLM/SGLang 携手共建分离式大模型推理平台

2024 年 6 月 Mooncake 技术报告公布
引发业界广泛讨论

从标杆应用 到产业推广

Kimi 底层推理平台

• 承载其近四千万的月活用户

• 以 KVCache 为中心的 P/D 分离架构

• 通过以存换算的思想，提升 Kimi 吞吐 75% 

以上

• 和国际最主流的开源推理框架共建分布式推

理架构的标准参考实现

icon

+

kvcache-ai/Mooncake --月之暗面和清华大学共同发起，多家大
模型和 Infra 厂商联合共建的开源项目

and more …

2025 年 2 月
USENIX FAST 最佳论文

USENIX FAST 最佳论文

被 GTC 2025 Keynote 黄仁勋专门介绍的 Dynamo 
分布式推理系统所使用

支持Kimi 1.5/2, 支持Ascend
最早支持DeepSeek大规模推理

4.1K
100 Contributors

https://kimi.ai/
https://github.com/kvcache-ai/Mooncake
https://github.com/kvcache-ai/Mooncake
https://github.com/kvcache-ai/Mooncake




06以KVCache 为中心的生态总结



06开源生态一些思考



THANKS
探索 AI 应用边界
Explore the limitsof AI applications



Mooncake 广泛的开源影响力

NVIDIA Dynamo

• 黄仁勋在 GTC 2025 Keynote 中
重点发布的分布式推理系统 –
Dynamo

• 其架构参考 Mooncake 设计并
在文档中专门致谢

• 被最广泛被使用的推理引
擎，应用于各大云厂商 -
vLLM

• 其分布式推理实现基于
Mooncake 实现

• xAI 底层推理引擎，被广泛应用
于 DeepSeek 推理 - SGLang

• 和 Mooncake 合作实现其分布式
推理架构


	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5: 推理过程KVCache计算方案
	幻灯片 6: KVCache 缓存对存储系统的挑战
	幻灯片 7: KVCache计算方式演进
	幻灯片 8: KVCache数据优化技术
	幻灯片 9: KVCache复用（Reuse）
	幻灯片 10: KVCache共享和复用基本原理
	幻灯片 11: KVCache共享和复用基本原理
	幻灯片 12
	幻灯片 13: 不同解耦架构带来的优势
	幻灯片 14: 不同解耦架构在推理训练框架中的位置
	幻灯片 15: 基于解耦架构的KVCache共享和复用
	幻灯片 16
	幻灯片 17: Mooncake项目架构
	幻灯片 18: Mooncake Store
	幻灯片 19: Mooncake Store 分层存储
	幻灯片 20: Mooncake对于大模型推理生态支持
	幻灯片 21: Mooncake 对于大模型推理生态支持（PD分离）
	幻灯片 22: Mooncake Store + HiCache（KVCache Offloading）
	幻灯片 23: Mooncake Store + LMCache/vLLM（Orchestration）
	幻灯片 24
	幻灯片 25: 当前挑战：显存墙与架构演进
	幻灯片 26: 核心技术双引擎：Mooncake 与 RBG
	幻灯片 27: 部署架构：Router + RBG + SGLang + Mooncake Store
	幻灯片 28: 解决行业难题——原地无感升级 (In-place Update)
	幻灯片 29: ACK场景下部署效果
	幻灯片 30
	幻灯片 31: AIGW网关架构
	幻灯片 32: 多因子综合权重负载均衡策略
	幻灯片 33: 精确KVCache Aware算法
	幻灯片 34
	幻灯片 35: 已有AI Production Stack开源生态
	幻灯片 36: Mooncake AI Production Stack
	幻灯片 37: Mooncake开源发展时间线
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42: Mooncake广泛的开源影响力

